A Robustified Metalearning Procedure for Regression Estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00510771" target="_blank" >RIV/67985556:_____/19:00510771 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/19:00510554
Výsledek na webu
<a href="http://dx.doi.org/10.18267/pr.2019.los.186.61" target="_blank" >http://dx.doi.org/10.18267/pr.2019.los.186.61</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18267/pr.2019.los.186.61" target="_blank" >10.18267/pr.2019.los.186.61</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Robustified Metalearning Procedure for Regression Estimators
Popis výsledku v původním jazyce
Metalearning represents a useful methodology for selecting and recommending a suitable algorithm or method for a new dataset exploiting a database of training datasets. While metalearning is potentially beneficial for the analysis of economic data, we must be aware of its instability and sensitivity to outlying measurements (outliers) as well as measurement errors. The aim of this paper is to robustify the metalearning process. First, we prepare some useful theoretical tools exploiting the idea of implicit weighting, inspired by the least weighted squares estimator. These include a robust coefficient of determination, a robust version of mean square error, and a simple rule for outlier detection in linear regression. We perform a metalearning study for recommending the best linear regression estimator for a new dataset (not included in the training database). The prediction of the optimal estimator is learned over a set of 20 real datasets with economic motivation, while the least squares are compared with several (highly) robust estimators. We investigate the effect of variable selection on the metalearning results. If the training as well as validation data are considered after a proper robust variable selection, the metalearning performance is improved remarkably, especially if a robust prediction error is used.
Název v anglickém jazyce
A Robustified Metalearning Procedure for Regression Estimators
Popis výsledku anglicky
Metalearning represents a useful methodology for selecting and recommending a suitable algorithm or method for a new dataset exploiting a database of training datasets. While metalearning is potentially beneficial for the analysis of economic data, we must be aware of its instability and sensitivity to outlying measurements (outliers) as well as measurement errors. The aim of this paper is to robustify the metalearning process. First, we prepare some useful theoretical tools exploiting the idea of implicit weighting, inspired by the least weighted squares estimator. These include a robust coefficient of determination, a robust version of mean square error, and a simple rule for outlier detection in linear regression. We perform a metalearning study for recommending the best linear regression estimator for a new dataset (not included in the training database). The prediction of the optimal estimator is learned over a set of 20 real datasets with economic motivation, while the least squares are compared with several (highly) robust estimators. We investigate the effect of variable selection on the metalearning results. If the training as well as validation data are considered after a proper robust variable selection, the metalearning performance is improved remarkably, especially if a robust prediction error is used.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-07384S" target="_blank" >GA17-07384S: Neparametrické (statistické) metody v moderní ekonometrii</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 13th International Days of Statistics and Economics Conference Proceedings
ISBN
978-80-87990-18-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
617-626
Název nakladatele
Melandrium
Místo vydání
Slaný
Místo konání akce
Prague
Datum konání akce
5. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—