A Metalearning Study for Robust Nonlinear Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524791" target="_blank" >RIV/67985807:_____/20:00524791 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-48791-1_39" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-48791-1_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48791-1_39" target="_blank" >10.1007/978-3-030-48791-1_39</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Metalearning Study for Robust Nonlinear Regression
Popis výsledku v původním jazyce
Metalearning is a methodology aiming at recommending the most suitable algorithm (or method) from several alternatives for a particular dataset. Its classification rule is learned over an available training database of datasets. It gradually penetrates to various applications in computer science and has also the potential to recommend the most suitable statistical estimator for a given dataset. We consider the nonlinear regression model. While there are some robust alternatives to the traditional (and very non-robust) nonlinear least squares available, it is not theoretically known which estimator performs the best for a particular dataset. In this work, we perform a metalearning study performed over 721 datasets predicting the best nonlinear regression estimator for an independent dataset. The estimators considered here include standard nonlinear least squares as well as its robust alternatives with a high breakdown point. On the whole, the presented study brings new arguments in favor of the nonlinear least weighted squares estimator, which is based on the idea to assign implicit weights to individual observations based on outlyingness of their residuals.
Název v anglickém jazyce
A Metalearning Study for Robust Nonlinear Regression
Popis výsledku anglicky
Metalearning is a methodology aiming at recommending the most suitable algorithm (or method) from several alternatives for a particular dataset. Its classification rule is learned over an available training database of datasets. It gradually penetrates to various applications in computer science and has also the potential to recommend the most suitable statistical estimator for a given dataset. We consider the nonlinear regression model. While there are some robust alternatives to the traditional (and very non-robust) nonlinear least squares available, it is not theoretically known which estimator performs the best for a particular dataset. In this work, we perform a metalearning study performed over 721 datasets predicting the best nonlinear regression estimator for an independent dataset. The estimators considered here include standard nonlinear least squares as well as its robust alternatives with a high breakdown point. On the whole, the presented study brings new arguments in favor of the nonlinear least weighted squares estimator, which is based on the idea to assign implicit weights to individual observations based on outlyingness of their residuals.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference
ISBN
978-3-030-48790-4
ISSN
2661-8141
e-ISSN
—
Počet stran výsledku
12
Strana od-do
499-510
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Halkidiki
Datum konání akce
5. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—