Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Statistical learning for recommending (robust) nonlinear regression methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00520199" target="_blank" >RIV/67985556:_____/19:00520199 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/19:00511819

  • Výsledek na webu

    <a href="https://content.sciendo.com/view/journals/jamsi/15/2/article-p47.xml" target="_blank" >https://content.sciendo.com/view/journals/jamsi/15/2/article-p47.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/jamsi-2019-0008" target="_blank" >10.2478/jamsi-2019-0008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Statistical learning for recommending (robust) nonlinear regression methods

  • Popis výsledku v původním jazyce

    We are interested in comparing the performance of various nonlinear estimators of parameters of the standard nonlinear regression model. While the standard nonlinear least squares estimator is vulnerable to the presence of outlying measurements in the data, there exist several robust alternatives. However, it is not clear which estimator should be used for a given dataset and this question remains extremely difficult (or perhaps infeasible) to be answered theoretically. Metalearning represents a computationally intensive methodology for optimal selection of algorithms (or methods) and is used here to predict the most suitable nonlinear estimator for a particular dataset. The classification rule is learned over a training database of 24 publicly available datasets. The results of the primary learning give an interesting argument in favor of the nonlinear least weighted squares estimator, which turns out to be the most suitable one for the majority of datasets. The subsequent metalearning reveals that tests of normality and heteroscedasticity play a crucial role in finding the most suitable nonlinear estimator.n

  • Název v anglickém jazyce

    Statistical learning for recommending (robust) nonlinear regression methods

  • Popis výsledku anglicky

    We are interested in comparing the performance of various nonlinear estimators of parameters of the standard nonlinear regression model. While the standard nonlinear least squares estimator is vulnerable to the presence of outlying measurements in the data, there exist several robust alternatives. However, it is not clear which estimator should be used for a given dataset and this question remains extremely difficult (or perhaps infeasible) to be answered theoretically. Metalearning represents a computationally intensive methodology for optimal selection of algorithms (or methods) and is used here to predict the most suitable nonlinear estimator for a particular dataset. The classification rule is learned over a training database of 24 publicly available datasets. The results of the primary learning give an interesting argument in favor of the nonlinear least weighted squares estimator, which turns out to be the most suitable one for the majority of datasets. The subsequent metalearning reveals that tests of normality and heteroscedasticity play a crucial role in finding the most suitable nonlinear estimator.n

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of applied mathematics, statistics and informatics

  • ISSN

    1336-9180

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    13

  • Strana od-do

    47-59

  • Kód UT WoS článku

    000503976200004

  • EID výsledku v databázi Scopus