Statistical learning for recommending (robust) nonlinear regression methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00520199" target="_blank" >RIV/67985556:_____/19:00520199 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/19:00511819
Výsledek na webu
<a href="https://content.sciendo.com/view/journals/jamsi/15/2/article-p47.xml" target="_blank" >https://content.sciendo.com/view/journals/jamsi/15/2/article-p47.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/jamsi-2019-0008" target="_blank" >10.2478/jamsi-2019-0008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical learning for recommending (robust) nonlinear regression methods
Popis výsledku v původním jazyce
We are interested in comparing the performance of various nonlinear estimators of parameters of the standard nonlinear regression model. While the standard nonlinear least squares estimator is vulnerable to the presence of outlying measurements in the data, there exist several robust alternatives. However, it is not clear which estimator should be used for a given dataset and this question remains extremely difficult (or perhaps infeasible) to be answered theoretically. Metalearning represents a computationally intensive methodology for optimal selection of algorithms (or methods) and is used here to predict the most suitable nonlinear estimator for a particular dataset. The classification rule is learned over a training database of 24 publicly available datasets. The results of the primary learning give an interesting argument in favor of the nonlinear least weighted squares estimator, which turns out to be the most suitable one for the majority of datasets. The subsequent metalearning reveals that tests of normality and heteroscedasticity play a crucial role in finding the most suitable nonlinear estimator.n
Název v anglickém jazyce
Statistical learning for recommending (robust) nonlinear regression methods
Popis výsledku anglicky
We are interested in comparing the performance of various nonlinear estimators of parameters of the standard nonlinear regression model. While the standard nonlinear least squares estimator is vulnerable to the presence of outlying measurements in the data, there exist several robust alternatives. However, it is not clear which estimator should be used for a given dataset and this question remains extremely difficult (or perhaps infeasible) to be answered theoretically. Metalearning represents a computationally intensive methodology for optimal selection of algorithms (or methods) and is used here to predict the most suitable nonlinear estimator for a particular dataset. The classification rule is learned over a training database of 24 publicly available datasets. The results of the primary learning give an interesting argument in favor of the nonlinear least weighted squares estimator, which turns out to be the most suitable one for the majority of datasets. The subsequent metalearning reveals that tests of normality and heteroscedasticity play a crucial role in finding the most suitable nonlinear estimator.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of applied mathematics, statistics and informatics
ISSN
1336-9180
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
13
Strana od-do
47-59
Kód UT WoS článku
000503976200004
EID výsledku v databázi Scopus
—