Effective Automatic Method Selection for Nonlinear Regression Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00541777" target="_blank" >RIV/67985807:_____/21:00541777 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10434504
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0129065721500209" target="_blank" >http://dx.doi.org/10.1142/S0129065721500209</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129065721500209" target="_blank" >10.1142/S0129065721500209</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective Automatic Method Selection for Nonlinear Regression Modeling
Popis výsledku v původním jazyce
Metalearning, an important part of artificial intelligence, represents a promising approach for the task of automatic selection of appropriate methods or algorithms. This paper is interested in recommending a suitable estimator for nonlinear regression modeling, particularly in recommending either the standard nonlinear least squares estimator or one of such available alternative estimators, which is highly robust with respect to the presence of outliers in the data. The authors hold the opinion that theoretical considerations will never be able to formulate such recommendations for the nonlinear regression context. Instead, metalearning is explored here as an original approach suitable for this task. In this paper, four different approaches for automatic method selection for nonlinear regression are proposed and computations over a training database of 643 real publicly available datasets are performed. Particularly, while the metalearning results may be harmed by the imbalanced number of groups, an effective approach yields much improved results, performing a novel combination of supervised feature selection by random forest and oversampling by synthetic minority oversampling technique (SMOTE). As a by-product, the computations bring arguments in favor of the very recent nonlinear least weighted squares estimator, which turns out to outperform other (and much more renowned) estimators in a quite large percentage of datasets.
Název v anglickém jazyce
Effective Automatic Method Selection for Nonlinear Regression Modeling
Popis výsledku anglicky
Metalearning, an important part of artificial intelligence, represents a promising approach for the task of automatic selection of appropriate methods or algorithms. This paper is interested in recommending a suitable estimator for nonlinear regression modeling, particularly in recommending either the standard nonlinear least squares estimator or one of such available alternative estimators, which is highly robust with respect to the presence of outliers in the data. The authors hold the opinion that theoretical considerations will never be able to formulate such recommendations for the nonlinear regression context. Instead, metalearning is explored here as an original approach suitable for this task. In this paper, four different approaches for automatic method selection for nonlinear regression are proposed and computations over a training database of 643 real publicly available datasets are performed. Particularly, while the metalearning results may be harmed by the imbalanced number of groups, an effective approach yields much improved results, performing a novel combination of supervised feature selection by random forest and oversampling by synthetic minority oversampling technique (SMOTE). As a by-product, the computations bring arguments in favor of the very recent nonlinear least weighted squares estimator, which turns out to outperform other (and much more renowned) estimators in a quite large percentage of datasets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Neural Systems
ISSN
0129-0657
e-ISSN
1793-6462
Svazek periodika
31
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
12
Strana od-do
2150020
Kód UT WoS článku
000696596800003
EID výsledku v databázi Scopus
2-s2.0-85104028019