Simulating Human Sleep Spindle MEG and EEG from Ion Channel and Circuit Level Dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00497026" target="_blank" >RIV/67985807:_____/19:00497026 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jneumeth.2018.10.002" target="_blank" >http://dx.doi.org/10.1016/j.jneumeth.2018.10.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jneumeth.2018.10.002" target="_blank" >10.1016/j.jneumeth.2018.10.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulating Human Sleep Spindle MEG and EEG from Ion Channel and Circuit Level Dynamics
Popis výsledku v původním jazyce
BACKGROUND: Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain. METHOD: We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed from subjects’ MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling simulated cortical activity to be projected to the M/EEG sensors. RESULTS: The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the same subjects. Simulated spindles with more core-dominant activity were more MEG weighted. Comparison with existing methods: Previous models lacked either spindle-generating thalamic neural dynamics or whole head biophysical modeling. The framework presented here is the first to simultaneously capture these disparate scales. CONCLUSIONS: This multiscale model provides a platform for the principled quantitative integration of existing information relevant to the generation of sleep spindles, and allows the implications of future findings to be explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain oscillations to be understood in terms of their underlying channels and synapses.
Název v anglickém jazyce
Simulating Human Sleep Spindle MEG and EEG from Ion Channel and Circuit Level Dynamics
Popis výsledku anglicky
BACKGROUND: Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain. METHOD: We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed from subjects’ MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling simulated cortical activity to be projected to the M/EEG sensors. RESULTS: The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the same subjects. Simulated spindles with more core-dominant activity were more MEG weighted. Comparison with existing methods: Previous models lacked either spindle-generating thalamic neural dynamics or whole head biophysical modeling. The framework presented here is the first to simultaneously capture these disparate scales. CONCLUSIONS: This multiscale model provides a platform for the principled quantitative integration of existing information relevant to the generation of sleep spindles, and allows the implications of future findings to be explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain oscillations to be understood in terms of their underlying channels and synapses.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neuroscience Methods
ISSN
0165-0270
e-ISSN
—
Svazek periodika
316
Číslo periodika v rámci svazku
15 March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
46-57
Kód UT WoS článku
000460717600006
EID výsledku v databázi Scopus
2-s2.0-85055055426