Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Skolemization and Herbrand theorems for lattice-valued logics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00501613" target="_blank" >RIV/67985807:_____/19:00501613 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.tcs.2019.02.007" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2019.02.007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2019.02.007" target="_blank" >10.1016/j.tcs.2019.02.007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Skolemization and Herbrand theorems for lattice-valued logics

  • Popis výsledku v původním jazyce

    Skolemization and Herbrand theorems are obtained for first-order logics based on algebras with a complete lattice reduct and operations that are monotone or antitone in each argument. These lattice-valued logics, defined as consequence relations on inequations between formulas, typically lack properties underlying automated reasoning in classical first-order logic such as prenexation, deduction theorems, or reductions from consequence to satisfiability. Skolemization and Herbrand theorems for the logics therefore take various forms, applying to the left or right of consequences, and restricted classes of inequations. In particular, in the presence of certain witnessing conditions, they admit sound “parallel” Skolemization procedures where a strong quantifier is removed by introducing a finite disjunction or conjunction of formulas with new function symbols. A general expansion lemma is also established that reduces consequence in a lattice-valued logic between inequations containing only strong occurrences of quantifiers on the left and weak occurrences on the right to consequence between inequations in the corresponding propositional logic. If propositional consequence is finitary, this lemma yields a Herbrand theorem for the logic.

  • Název v anglickém jazyce

    Skolemization and Herbrand theorems for lattice-valued logics

  • Popis výsledku anglicky

    Skolemization and Herbrand theorems are obtained for first-order logics based on algebras with a complete lattice reduct and operations that are monotone or antitone in each argument. These lattice-valued logics, defined as consequence relations on inequations between formulas, typically lack properties underlying automated reasoning in classical first-order logic such as prenexation, deduction theorems, or reductions from consequence to satisfiability. Skolemization and Herbrand theorems for the logics therefore take various forms, applying to the left or right of consequences, and restricted classes of inequations. In particular, in the presence of certain witnessing conditions, they admit sound “parallel” Skolemization procedures where a strong quantifier is removed by introducing a finite disjunction or conjunction of formulas with new function symbols. A general expansion lemma is also established that reduces consequence in a lattice-valued logic between inequations containing only strong occurrences of quantifiers on the left and weak occurrences on the right to consequence between inequations in the corresponding propositional logic. If propositional consequence is finitary, this lemma yields a Herbrand theorem for the logic.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    768

  • Číslo periodika v rámci svazku

    10 May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

    54-75

  • Kód UT WoS článku

    000466456500003

  • EID výsledku v databázi Scopus

    2-s2.0-85061573241