Skolemization and Herbrand theorems for lattice-valued logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00501613" target="_blank" >RIV/67985807:_____/19:00501613 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2019.02.007" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2019.02.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2019.02.007" target="_blank" >10.1016/j.tcs.2019.02.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Skolemization and Herbrand theorems for lattice-valued logics
Popis výsledku v původním jazyce
Skolemization and Herbrand theorems are obtained for first-order logics based on algebras with a complete lattice reduct and operations that are monotone or antitone in each argument. These lattice-valued logics, defined as consequence relations on inequations between formulas, typically lack properties underlying automated reasoning in classical first-order logic such as prenexation, deduction theorems, or reductions from consequence to satisfiability. Skolemization and Herbrand theorems for the logics therefore take various forms, applying to the left or right of consequences, and restricted classes of inequations. In particular, in the presence of certain witnessing conditions, they admit sound “parallel” Skolemization procedures where a strong quantifier is removed by introducing a finite disjunction or conjunction of formulas with new function symbols. A general expansion lemma is also established that reduces consequence in a lattice-valued logic between inequations containing only strong occurrences of quantifiers on the left and weak occurrences on the right to consequence between inequations in the corresponding propositional logic. If propositional consequence is finitary, this lemma yields a Herbrand theorem for the logic.
Název v anglickém jazyce
Skolemization and Herbrand theorems for lattice-valued logics
Popis výsledku anglicky
Skolemization and Herbrand theorems are obtained for first-order logics based on algebras with a complete lattice reduct and operations that are monotone or antitone in each argument. These lattice-valued logics, defined as consequence relations on inequations between formulas, typically lack properties underlying automated reasoning in classical first-order logic such as prenexation, deduction theorems, or reductions from consequence to satisfiability. Skolemization and Herbrand theorems for the logics therefore take various forms, applying to the left or right of consequences, and restricted classes of inequations. In particular, in the presence of certain witnessing conditions, they admit sound “parallel” Skolemization procedures where a strong quantifier is removed by introducing a finite disjunction or conjunction of formulas with new function symbols. A general expansion lemma is also established that reduces consequence in a lattice-valued logic between inequations containing only strong occurrences of quantifiers on the left and weak occurrences on the right to consequence between inequations in the corresponding propositional logic. If propositional consequence is finitary, this lemma yields a Herbrand theorem for the logic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
768
Číslo periodika v rámci svazku
10 May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
54-75
Kód UT WoS článku
000466456500003
EID výsledku v databázi Scopus
2-s2.0-85061573241