Term Negation in First Order logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505127" target="_blank" >RIV/67985807:_____/19:00505127 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15210/19:73600912
Výsledek na webu
<a href="http://dx.doi.org/10.2143/LEA.247.0.3287264" target="_blank" >http://dx.doi.org/10.2143/LEA.247.0.3287264</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2143/LEA.247.0.3287264" target="_blank" >10.2143/LEA.247.0.3287264</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Term Negation in First Order logic
Popis výsledku v původním jazyce
We provide a formalization of Aristotelian term negation within an extension of classical first-order logic by two predicate operators. The operators represent the range of application of a predicate and the term negation of a predicate, respectively. We discuss several classes of models for the language characterised by various assumptions concerning the interaction between range of application, term negation and Boolean complementation. We show that the discussed classes can be defined by sets of formulas. In our intended class of models, term negation of $P$ corresponds to the complement of $P$ relative to the range of application of $P$. It is an established fact about term negation that it does not satisfy the the principle of Conversion by Contraposition. This seems to be in conflict with the thesis, put forward by Lenzen and Berto, that contraposition is a minimal requirement for an operator to be a proper negation. We show that the arguments put forward in support of this thesis do not apply to term negation.
Název v anglickém jazyce
Term Negation in First Order logic
Popis výsledku anglicky
We provide a formalization of Aristotelian term negation within an extension of classical first-order logic by two predicate operators. The operators represent the range of application of a predicate and the term negation of a predicate, respectively. We discuss several classes of models for the language characterised by various assumptions concerning the interaction between range of application, term negation and Boolean complementation. We show that the discussed classes can be defined by sets of formulas. In our intended class of models, term negation of $P$ corresponds to the complement of $P$ relative to the range of application of $P$. It is an established fact about term negation that it does not satisfy the the principle of Conversion by Contraposition. This seems to be in conflict with the thesis, put forward by Lenzen and Berto, that contraposition is a minimal requirement for an operator to be a proper negation. We show that the arguments put forward in support of this thesis do not apply to term negation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logique et Analyse
ISSN
0024-5836
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
247
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
20
Strana od-do
265-284
Kód UT WoS článku
000518710900003
EID výsledku v databázi Scopus
—