Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00334283" target="_blank" >RIV/68407700:21340/19:00334283 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/math7090796" target="_blank" >https://doi.org/10.3390/math7090796</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math7090796" target="_blank" >10.3390/math7090796</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations

  • Popis výsledku v původním jazyce

    In this article, we first provide a survey of the exponential option pricing models and show that in the framework of the risk-neutral approach, they are governed by the space-fractional diffusion equation. Then, we introduce a more general class of models based on the space-time-fractional diffusion equation and recall some recent results in this field concerning the European option pricing and the risk-neutral parameter. We proceed with an extension of these results to the class of exotic options. In particular, we show that the call and put prices can be expressed in the form of simple power series in terms of the log-forward moneyness and the risk-neutral parameter. Finally, we provide the closed-form formulas for the first and second order risk sensitivities and study the dependencies of the portfolio hedging and profit-and-loss calculations upon the model parameters.

  • Název v anglickém jazyce

    Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations

  • Popis výsledku anglicky

    In this article, we first provide a survey of the exponential option pricing models and show that in the framework of the risk-neutral approach, they are governed by the space-fractional diffusion equation. Then, we introduce a more general class of models based on the space-time-fractional diffusion equation and recall some recent results in this field concerning the European option pricing and the risk-neutral parameter. We proceed with an extension of these results to the class of exotic options. In particular, we show that the call and put prices can be expressed in the form of simple power series in terms of the log-forward moneyness and the risk-neutral parameter. Finally, we provide the closed-form formulas for the first and second order risk sensitivities and study the dependencies of the portfolio hedging and profit-and-loss calculations upon the model parameters.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    23

  • Strana od-do

  • Kód UT WoS článku

    000487953700044

  • EID výsledku v databázi Scopus

    2-s2.0-85072324812