Homomorphism-homogeneity classes of countable L-colored graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00508590" target="_blank" >RIV/67985807:_____/19:00508590 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1224/669" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1224/669</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homomorphism-homogeneity classes of countable L-colored graphs
Popis výsledku v původním jazyce
The notion of homomorphism-homogeneity, introduced by Cameron and Nešetřil, originated as a variation on ultrahomogeneity. By fixing the type of finite homomorphism and global extension, several homogeneity classes, calledmorphism extension classes, can be defined. These classes are studied for various languages and axiom sets. Hartman, Hubička and Mašulović showed for finite undirected L-colored graphs without loops, where colors for vertices and edges are chosen from a partially ordered set L, that when L is a linear order, the classes HH and MH of L-colored graphs coincide, contributing thus to a question of Cameron and Nešetřil. They also showed that the same is true for vertex-uniform finite L-colored graphs when L is a diamond. In this work, we extend their results to countably infinite L-colored graphs, proving that the classes MH and HH coincide if and only if L is a linear order.
Název v anglickém jazyce
Homomorphism-homogeneity classes of countable L-colored graphs
Popis výsledku anglicky
The notion of homomorphism-homogeneity, introduced by Cameron and Nešetřil, originated as a variation on ultrahomogeneity. By fixing the type of finite homomorphism and global extension, several homogeneity classes, calledmorphism extension classes, can be defined. These classes are studied for various languages and axiom sets. Hartman, Hubička and Mašulović showed for finite undirected L-colored graphs without loops, where colors for vertices and edges are chosen from a partially ordered set L, that when L is a linear order, the classes HH and MH of L-colored graphs coincide, contributing thus to a question of Cameron and Nešetřil. They also showed that the same is true for vertex-uniform finite L-colored graphs when L is a diamond. In this work, we extend their results to countably infinite L-colored graphs, proving that the classes MH and HH coincide if and only if L is a linear order.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Mathematica Universitatis Comenianae
ISSN
0231-6986
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
377-382
Kód UT WoS článku
000484349000004
EID výsledku v databázi Scopus
2-s2.0-85073394451