Regression Neural Networks with a Highly Robust Loss Function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00522365" target="_blank" >RIV/67985807:_____/20:00522365 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-48814-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-030-48814-7_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48814-7_2" target="_blank" >10.1007/978-3-030-48814-7_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regression Neural Networks with a Highly Robust Loss Function
Popis výsledku v původním jazyce
Artificial neural networks represent an important class of methods for fitting nonlinear regression to data with an unknown regression function. However, usual ways of training of the most common types of neural networks applied to nonlinear regression tasks suffer from the presence of outlying measurements (outliers) in the data. So far, only a few robust alternatives for training common forms of neural networks have been proposed. In this work, we robustify two common types of neural networks by considering robust versions of their loss functions, which have turned out to be successful in linear regression. Particularly, we extend the idea of using the loss of the least trimmed squares estimator to radial basis function networks. We also propose multilayer perceptrons and radial basis function networks based on the loss of the least weighted squares estimator. The performance of these novel methods is compared with that of standard neural networks on 4 datasets. The results bring arguments in favor of the novel robust approach based on the least weighted squares estimator with trimmed linear weights in terms of yielding the smallest robust prediction error in a variety of situations. Robust neural networks are even able to outperform the prediction ability of support vector regression.
Název v anglickém jazyce
Regression Neural Networks with a Highly Robust Loss Function
Popis výsledku anglicky
Artificial neural networks represent an important class of methods for fitting nonlinear regression to data with an unknown regression function. However, usual ways of training of the most common types of neural networks applied to nonlinear regression tasks suffer from the presence of outlying measurements (outliers) in the data. So far, only a few robust alternatives for training common forms of neural networks have been proposed. In this work, we robustify two common types of neural networks by considering robust versions of their loss functions, which have turned out to be successful in linear regression. Particularly, we extend the idea of using the loss of the least trimmed squares estimator to radial basis function networks. We also propose multilayer perceptrons and radial basis function networks based on the loss of the least weighted squares estimator. The performance of these novel methods is compared with that of standard neural networks on 4 datasets. The results bring arguments in favor of the novel robust approach based on the least weighted squares estimator with trimmed linear weights in terms of yielding the smallest robust prediction error in a variety of situations. Robust neural networks are even able to outperform the prediction ability of support vector regression.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Analytical Methods in Statistics
ISBN
978-3-030-48813-0
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
17-29
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Liberec
Datum konání akce
16. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—