Robust Multilayer Perceptrons: Robust Loss Functions and Their Derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524790" target="_blank" >RIV/67985807:_____/20:00524790 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-48791-1_43" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-48791-1_43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48791-1_43" target="_blank" >10.1007/978-3-030-48791-1_43</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Multilayer Perceptrons: Robust Loss Functions and Their Derivatives
Popis výsledku v původním jazyce
Common types of artificial neural networks have been well known to suffer from the presence of outlying measurements (outliers) in the data. However, there are only a few available robust alternatives for training common form of neural networks. In this work, we investigate robust fitting of multilayer perceptrons, i.e. alternative approaches to the most common type of feedforward neural networks. Particularly, we consider robust neural networks based on the robust loss function of the least trimmed squares, for which we express formulas for derivatives of the loss functions. Some formulas, which are however incorrect, have been already available. Further, we consider a very recently proposed multilayer perceptron based on the loss function of the least weighted squares, which appears a promising highly robust approach. We also derive the derivatives of the loss functions, which are to the best of our knowledge a novel contribution of this paper. The derivatives may find applications in implementations of the robust neural networks, if a (gradient-based) backpropagation algorithm is used.
Název v anglickém jazyce
Robust Multilayer Perceptrons: Robust Loss Functions and Their Derivatives
Popis výsledku anglicky
Common types of artificial neural networks have been well known to suffer from the presence of outlying measurements (outliers) in the data. However, there are only a few available robust alternatives for training common form of neural networks. In this work, we investigate robust fitting of multilayer perceptrons, i.e. alternative approaches to the most common type of feedforward neural networks. Particularly, we consider robust neural networks based on the robust loss function of the least trimmed squares, for which we express formulas for derivatives of the loss functions. Some formulas, which are however incorrect, have been already available. Further, we consider a very recently proposed multilayer perceptron based on the loss function of the least weighted squares, which appears a promising highly robust approach. We also derive the derivatives of the loss functions, which are to the best of our knowledge a novel contribution of this paper. The derivatives may find applications in implementations of the robust neural networks, if a (gradient-based) backpropagation algorithm is used.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference
ISBN
978-3-030-48790-4
ISSN
2661-8141
e-ISSN
—
Počet stran výsledku
12
Strana od-do
546-557
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Halkidiki
Datum konání akce
5. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—