Automata Complete Computation with Hodgkin-Huxley Neural Networks Composed of Synfire Rings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524679" target="_blank" >RIV/67985807:_____/20:00524679 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.neunet.2020.03.019" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2020.03.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2020.03.019" target="_blank" >10.1016/j.neunet.2020.03.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automata Complete Computation with Hodgkin-Huxley Neural Networks Composed of Synfire Rings
Popis výsledku v původním jazyce
Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin–Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin–Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.
Název v anglickém jazyce
Automata Complete Computation with Hodgkin-Huxley Neural Networks Composed of Synfire Rings
Popis výsledku anglicky
Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin–Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin–Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Networks
ISSN
0893-6080
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
312-334
Kód UT WoS článku
000536448500009
EID výsledku v databázi Scopus
2-s2.0-85082865630