Turing Computation with Neural Networks Composed of Synfire Rings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00562577" target="_blank" >RIV/67985807:_____/22:00562577 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.1109/IJCNN55064.2022.9892332" target="_blank" >https://dx.doi.org/10.1109/IJCNN55064.2022.9892332</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN55064.2022.9892332" target="_blank" >10.1109/IJCNN55064.2022.9892332</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Turing Computation with Neural Networks Composed of Synfire Rings
Popis výsledku v původním jazyce
Synfire rings are fundamental neural circuits capable of conveying self-sustained activities in a robust and temporally precise manner. We propose a Turing-complete paradigm for neural computation based on synfire rings. More specifically, we provide an algorithmic procedure which, for any fixed-space Turing machine, builds a corresponding Boolean neural network composed of synfire rings capable of simulating it. As a consequence, any fixed-space Turing machine with tapes of length N can be simulated in linear time by some Boolean neural network composed of O(N) rings and cells. The construction can naturally be extended to general Turing machines. Therefore, any Turing machine can be simulated in linear time by some Boolean neural network composed of infinitely many synfire rings. The linear time simulation relies on the possibility to mimic the behavior of the machines. In the long term, these results might contribute to the realization of biological neural computers.
Název v anglickém jazyce
Turing Computation with Neural Networks Composed of Synfire Rings
Popis výsledku anglicky
Synfire rings are fundamental neural circuits capable of conveying self-sustained activities in a robust and temporally precise manner. We propose a Turing-complete paradigm for neural computation based on synfire rings. More specifically, we provide an algorithmic procedure which, for any fixed-space Turing machine, builds a corresponding Boolean neural network composed of synfire rings capable of simulating it. As a consequence, any fixed-space Turing machine with tapes of length N can be simulated in linear time by some Boolean neural network composed of O(N) rings and cells. The construction can naturally be extended to general Turing machines. Therefore, any Turing machine can be simulated in linear time by some Boolean neural network composed of infinitely many synfire rings. The linear time simulation relies on the possibility to mimic the behavior of the machines. In the long term, these results might contribute to the realization of biological neural computers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 International Joint Conference on Neural Networks (IJCNN) Proceedings
ISBN
978-1-7281-8671-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Padua
Datum konání akce
18. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000867070903092