SAT Modulo Differential Equation Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531242" target="_blank" >RIV/67985807:_____/20:00531242 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/20:00341733
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-50995-8_5" target="_blank" >http://dx.doi.org/10.1007/978-3-030-50995-8_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-50995-8_5" target="_blank" >10.1007/978-3-030-50995-8_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SAT Modulo Differential Equation Simulations
Popis výsledku v původním jazyce
Differential equations are of immense importance for modeling physical phenomena, often in combination with discrete modeling formalisms. In current industrial practice, properties of the resulting models are checked by testing, using simulation tools. Research on SAT solvers that are able to handle differential equations has aimed at replacing tests by correctness proofs. However, there are fundamental limitations to such approaches in the form of undecidability, and moreover, the resulting solvers do not scale to problems of the size commonly handled by simulation tools. Also, in many applications, classical mathematical semantics of differential equations often does not correspond well to the actual intended semantics, and hence a correctness proof wrt. mathematical semantics does not ensure correctness of the intended system. In this paper, we head at overcoming those limitations by an alternative approach to handling differential equations within SAT solvers. This approach is usually based on the semantics used by tests in simulation tools, but still may result in mathematically precise correctness proofs wrt. that semantics. Experiments with a prototype implementation confirm the promise of such an approach.
Název v anglickém jazyce
SAT Modulo Differential Equation Simulations
Popis výsledku anglicky
Differential equations are of immense importance for modeling physical phenomena, often in combination with discrete modeling formalisms. In current industrial practice, properties of the resulting models are checked by testing, using simulation tools. Research on SAT solvers that are able to handle differential equations has aimed at replacing tests by correctness proofs. However, there are fundamental limitations to such approaches in the form of undecidability, and moreover, the resulting solvers do not scale to problems of the size commonly handled by simulation tools. Also, in many applications, classical mathematical semantics of differential equations often does not correspond well to the actual intended semantics, and hence a correctness proof wrt. mathematical semantics does not ensure correctness of the intended system. In this paper, we head at overcoming those limitations by an alternative approach to handling differential equations within SAT solvers. This approach is usually based on the semantics used by tests in simulation tools, but still may result in mathematically precise correctness proofs wrt. that semantics. Experiments with a prototype implementation confirm the promise of such an approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Tests and Proofs
ISBN
978-3-030-50994-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
20
Strana od-do
80-99
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Bergen
Datum konání akce
22. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—