The strength of the dominance rule
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00598225" target="_blank" >RIV/67985840:_____/24:00598225 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.SAT.2024.20" target="_blank" >https://doi.org/10.4230/LIPIcs.SAT.2024.20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SAT.2024.20" target="_blank" >10.4230/LIPIcs.SAT.2024.20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The strength of the dominance rule
Popis výsledku v původním jazyce
It has become standard that, when a SAT solver decides that a CNF Γ is unsatisfiable, it produces a certificate of unsatisfiability in the form of a refutation of Γ in some proof system. The system typically used is DRAT, which is equivalent to extended resolution (ER) - for example, until this year DRAT refutations were required in the annual SAT competition. Recently [Bogaerts et al. 2023] introduced a new proof system, associated with the tool VeriPB, which is at least as strong as DRAT and is further able to handle certain symmetry-breaking techniques. We show that this system simulates the proof system G1, which allows limited reasoning with QBFs and forms the first level above ER in a natural hierarchy of proof systems. This hierarchy is not known to be strict, but nevertheless this is evidence that the system of [Bogaerts et al. 2023] is plausibly strictly stronger than ER and DRAT. In the other direction, we show that symmetry-breaking for a single symmetry can be handled inside ER.
Název v anglickém jazyce
The strength of the dominance rule
Popis výsledku anglicky
It has become standard that, when a SAT solver decides that a CNF Γ is unsatisfiable, it produces a certificate of unsatisfiability in the form of a refutation of Γ in some proof system. The system typically used is DRAT, which is equivalent to extended resolution (ER) - for example, until this year DRAT refutations were required in the annual SAT competition. Recently [Bogaerts et al. 2023] introduced a new proof system, associated with the tool VeriPB, which is at least as strong as DRAT and is further able to handle certain symmetry-breaking techniques. We show that this system simulates the proof system G1, which allows limited reasoning with QBFs and forms the first level above ER in a natural hierarchy of proof systems. This hierarchy is not known to be strict, but nevertheless this is evidence that the system of [Bogaerts et al. 2023] is plausibly strictly stronger than ER and DRAT. In the other direction, we show that symmetry-breaking for a single symmetry can be handled inside ER.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-04825S" target="_blank" >GA23-04825S: Logika a nesplnitelnost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)
ISBN
978-3-95977-334-8
ISSN
—
e-ISSN
—
Počet stran výsledku
22
Strana od-do
20
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Pune
Datum konání akce
21. 8. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—