Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DRAT and propagation redundancy proofs without new variables

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542699" target="_blank" >RIV/67985840:_____/21:00542699 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dx.doi.org/10.23638/LMCS-17(2:12)2021" target="_blank" >https://dx.doi.org/10.23638/LMCS-17(2:12)2021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23638/LMCS-17(2:12)2021" target="_blank" >10.23638/LMCS-17(2:12)2021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DRAT and propagation redundancy proofs without new variables

  • Popis výsledku v původním jazyce

    We study the complexity of a range of propositional proof systems which allow inference rules of the form: from a set of clauses Γ derive the set of clauses Γ ∪ {C} where, due to some syntactic condition, Γ ∪ {C} is satisfiable if Γ is, but where Γ does not necessarily imply C. These inference rules include BC, RAT, SPR and PR (respectively short for blocked clauses, resolution asymmetric tautologies, subset propagation redundancy and propagation redundancy), which arose from work in satisfiability (SAT) solving. We introduce a new, more general rule SR (substitution redundancy). If the new clause C is allowed to include new variables then the systems based on these rules are all equivalent to extended resolution. We focus on restricted systems that do not allow new variables. The systems with deletion, where we can delete a clause from our set at any time, are denoted DBC−, DRAT−, DSPR−, DPR− and DSR−. The systems without deletion are BC−, RAT−, SPR−, PR− and SR−. With deletion, we show that DRAT−, DSPR− and DPR− are equivalent. By earlier work of Kiesl, Rebola-Pardo and Heule [KRPH18], they are also equivalent to DBC−. Without deletion, we show that SPR− can simulate PR− provided only short clauses are inferred by SPR inferences. We also show that many of the well-known “hard” principles have small SPR− refutations. These include the pigeonhole principle, bit pigeonhole principle, parity principle, Tseitin tautologies and clique-coloring tautologies. SPR− can also handle or-fication and xor-ification, and lifting with an index gadget. Our final result is an exponential size lower bound for RAT− refutations, giving exponential separations between RAT− and both DRAT− and SPR−.

  • Název v anglickém jazyce

    DRAT and propagation redundancy proofs without new variables

  • Popis výsledku anglicky

    We study the complexity of a range of propositional proof systems which allow inference rules of the form: from a set of clauses Γ derive the set of clauses Γ ∪ {C} where, due to some syntactic condition, Γ ∪ {C} is satisfiable if Γ is, but where Γ does not necessarily imply C. These inference rules include BC, RAT, SPR and PR (respectively short for blocked clauses, resolution asymmetric tautologies, subset propagation redundancy and propagation redundancy), which arose from work in satisfiability (SAT) solving. We introduce a new, more general rule SR (substitution redundancy). If the new clause C is allowed to include new variables then the systems based on these rules are all equivalent to extended resolution. We focus on restricted systems that do not allow new variables. The systems with deletion, where we can delete a clause from our set at any time, are denoted DBC−, DRAT−, DSPR−, DPR− and DSR−. The systems without deletion are BC−, RAT−, SPR−, PR− and SR−. With deletion, we show that DRAT−, DSPR− and DPR− are equivalent. By earlier work of Kiesl, Rebola-Pardo and Heule [KRPH18], they are also equivalent to DBC−. Without deletion, we show that SPR− can simulate PR− provided only short clauses are inferred by SPR inferences. We also show that many of the well-known “hard” principles have small SPR− refutations. These include the pigeonhole principle, bit pigeonhole principle, parity principle, Tseitin tautologies and clique-coloring tautologies. SPR− can also handle or-fication and xor-ification, and lifting with an index gadget. Our final result is an exponential size lower bound for RAT− refutations, giving exponential separations between RAT− and both DRAT− and SPR−.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-05497S" target="_blank" >GA19-05497S: Složitost matematických důkazů a struktur</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Logical Methods in Computer Science

  • ISSN

    1860-5974

  • e-ISSN

    1860-5974

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    31

  • Strana od-do

    12

  • Kód UT WoS článku

    000658731000011

  • EID výsledku v databázi Scopus

    2-s2.0-85105356493