DRAT proofs, propagation redundancy, and extended resolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00507739" target="_blank" >RIV/67985840:_____/19:00507739 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-24258-9_5" target="_blank" >http://dx.doi.org/10.1007/978-3-030-24258-9_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-24258-9_5" target="_blank" >10.1007/978-3-030-24258-9_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DRAT proofs, propagation redundancy, and extended resolution
Popis výsledku v původním jazyce
We study the proof complexity of RAT proofs and related systems including BC, SPR, and PR which use blocked clauses and (subset) propagation redundancy. These systems arise in satisfiability (SAT) solving, and allow inferences which preserve satisfiability but not logical implication. We introduce a new inference SR using substitution redundancy. We consider systems both with and without deletion. With new variables allowed, the systems are known to have the same proof theoretic strength as extended resolution. We focus on the systems that do not allow new variables to be introduced. Our first main result is that the systems DRAT $${}^-$$, DSPR $${}^-$$ and DPR $${}^-$$, which allow deletion but not new variables, are polynomially equivalent. By earlier work of Kiesl, Rebola-Pardo and Heule, they are also equivalent to DBC $${}^-$$. Without deletion and without new variables, we show that SPR $${}^-$$ can polynomially simulate PR $${}^-$$ provided only short clauses are inferred by SPR inferences. Our next main results are that many of the well-known “hard” principles have polynomial size SPR $${}^-$$ refutations (without deletions or new variables). These include the pigeonhole principle, bit pigeonhole principle, parity principle, Tseitin tautologies, and clique-coloring tautologies, SPR $${}^-$$ can also handle or-fication and xor-ification. Our final result is an exponential size lower bound for RAT $${}^-$$ refutations, giving exponential separations between RAT $${}^-$$ and both DRAT $${}^-$$ and SPR $${}^-$$.
Název v anglickém jazyce
DRAT proofs, propagation redundancy, and extended resolution
Popis výsledku anglicky
We study the proof complexity of RAT proofs and related systems including BC, SPR, and PR which use blocked clauses and (subset) propagation redundancy. These systems arise in satisfiability (SAT) solving, and allow inferences which preserve satisfiability but not logical implication. We introduce a new inference SR using substitution redundancy. We consider systems both with and without deletion. With new variables allowed, the systems are known to have the same proof theoretic strength as extended resolution. We focus on the systems that do not allow new variables to be introduced. Our first main result is that the systems DRAT $${}^-$$, DSPR $${}^-$$ and DPR $${}^-$$, which allow deletion but not new variables, are polynomially equivalent. By earlier work of Kiesl, Rebola-Pardo and Heule, they are also equivalent to DBC $${}^-$$. Without deletion and without new variables, we show that SPR $${}^-$$ can polynomially simulate PR $${}^-$$ provided only short clauses are inferred by SPR inferences. Our next main results are that many of the well-known “hard” principles have polynomial size SPR $${}^-$$ refutations (without deletions or new variables). These include the pigeonhole principle, bit pigeonhole principle, parity principle, Tseitin tautologies, and clique-coloring tautologies, SPR $${}^-$$ can also handle or-fication and xor-ification. Our final result is an exponential size lower bound for RAT $${}^-$$ refutations, giving exponential separations between RAT $${}^-$$ and both DRAT $${}^-$$ and SPR $${}^-$$.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05497S" target="_blank" >GA19-05497S: Složitost matematických důkazů a struktur</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory and Applications of Satisfiability Testing – SAT 2019
ISBN
978-3-030-24257-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
19
Strana od-do
71-89
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Lisbon
Datum konání akce
9. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—