Singly Generated Quasivarieties and Residuated Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531245" target="_blank" >RIV/67985807:_____/20:00531245 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/malq.201900012" target="_blank" >http://dx.doi.org/10.1002/malq.201900012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/malq.201900012" target="_blank" >10.1002/malq.201900012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Singly Generated Quasivarieties and Residuated Structures
Popis výsledku v původním jazyce
A quasivariety K of algebras has the joint embedding property (JEP) if and only if it is generated by a single algebra A . It is structurally complete if and only if the free ℵ0‐generated algebra in K can serve as A . A consequence of this demand, called ‘passive structural completeness’ (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K ‐simple algebra. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC if and only if its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics.
Název v anglickém jazyce
Singly Generated Quasivarieties and Residuated Structures
Popis výsledku anglicky
A quasivariety K of algebras has the joint embedding property (JEP) if and only if it is generated by a single algebra A . It is structurally complete if and only if the free ℵ0‐generated algebra in K can serve as A . A consequence of this demand, called ‘passive structural completeness’ (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K ‐simple algebra. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC if and only if its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_050%2F0008361" target="_blank" >EF17_050/0008361: Rozvoj lidských zdrojů pro výzkum v teoretické informatice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Svazek periodika
66
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
150-172
Kód UT WoS článku
000541456700001
EID výsledku v databázi Scopus
2-s2.0-85087178840