Complexity of Computing Interval Matrix Powers for Special Classes of Matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532104" target="_blank" >RIV/67985807:_____/20:00532104 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/20:10419270
Výsledek na webu
<a href="http://hdl.handle.net/11104/0310705" target="_blank" >http://hdl.handle.net/11104/0310705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2020.0379-19" target="_blank" >10.21136/AM.2020.0379-19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of Computing Interval Matrix Powers for Special Classes of Matrices
Popis výsledku v původním jazyce
Computing powers of interval matrices is a computationally hard problem. Indeed, it is NP-hard even when the exponent is 3 and the matrices only have interval components in one row and one column. Motivated by this result, we consider special types of interval matrices where the interval components occupy specific positions. We show that computing the third power of matrices with only one column occupied by interval components can be solved in cubic time. So the asymptotic time complexity is the same as for the real case (considering the textbook matrix product method). We further show that for a fixed exponent $k$ and for each interval matrix (of an arbitrary size) whose $k$th power has components that can be expressed as polynomials in a fixed number of interval variables, the computation of the $k$th power is polynomial up to a given accuracy. Polynomiality is shown by using the Tarski method of quantifier elimination. This result is used to show the polynomiality of computing the cube of interval band matrices, among others. Additionally, we study parametric matrices and prove NP-hardness already for their squares. We also describe one specific class of interval parametric matrices that can be squared by a polynomial algorithm.
Název v anglickém jazyce
Complexity of Computing Interval Matrix Powers for Special Classes of Matrices
Popis výsledku anglicky
Computing powers of interval matrices is a computationally hard problem. Indeed, it is NP-hard even when the exponent is 3 and the matrices only have interval components in one row and one column. Motivated by this result, we consider special types of interval matrices where the interval components occupy specific positions. We show that computing the third power of matrices with only one column occupied by interval components can be solved in cubic time. So the asymptotic time complexity is the same as for the real case (considering the textbook matrix product method). We further show that for a fixed exponent $k$ and for each interval matrix (of an arbitrary size) whose $k$th power has components that can be expressed as polynomials in a fixed number of interval variables, the computation of the $k$th power is polynomial up to a given accuracy. Polynomiality is shown by using the Tarski method of quantifier elimination. This result is used to show the polynomiality of computing the cube of interval band matrices, among others. Additionally, we study parametric matrices and prove NP-hardness already for their squares. We also describe one specific class of interval parametric matrices that can be squared by a polynomial algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
19
Strana od-do
645-663
Kód UT WoS článku
000576794600007
EID výsledku v databázi Scopus
2-s2.0-85092282996