Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Biomarkers in Combination with Other Prognostic and Predictive Factors - Individualized Multivariate Statistical Models for Risk and Probability Estimation in Oncology. Implementation into software BIANTA and CRACTES with Some Casuistics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534206" target="_blank" >RIV/67985807:_____/20:00534206 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/20:00344089

  • Výsledek na webu

    <a href="https://biomedres.us/pdfs/BJSTR.MS.ID.004676.pdf" target="_blank" >https://biomedres.us/pdfs/BJSTR.MS.ID.004676.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.26717/BJSTR.2020.28.004676" target="_blank" >10.26717/BJSTR.2020.28.004676</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Biomarkers in Combination with Other Prognostic and Predictive Factors - Individualized Multivariate Statistical Models for Risk and Probability Estimation in Oncology. Implementation into software BIANTA and CRACTES with Some Casuistics

  • Popis výsledku v původním jazyce

    Each patient has his/her own individual characteristics. It is given by his/her main diagnosis and its detailed description (e.g., in oncology by TNM classification, grading, histological type etc.), comorbidities, results of genetic markers, biomarkers and many other factors. Standard patient care is usually based on the results of large clinical trials. This approach ignores the patient’s individuality. Using patient profiling based on tumor characteristics, genetic markers and biomarkers, it is possible to identify the drug with the highest clinical benefit for small patient groups where, according to the guidelines, treatment choice is no longer defined only by diagnosis and TNM classification. This procedure belongs to the area of personalized medicine. An important methodology is how to find similar patients to a newcomer and how to evaluate clinical benefits and risks of different types of therapies in this group of similar patients. The main focus is on overall survival, but time to progression and adverse reactions to treatment are also important. Based on extensive patient data available in electronic medical records (hospital information systems), similar cases to a newcomer can be identified and some statistics for these similar patients can be provided.

  • Název v anglickém jazyce

    Biomarkers in Combination with Other Prognostic and Predictive Factors - Individualized Multivariate Statistical Models for Risk and Probability Estimation in Oncology. Implementation into software BIANTA and CRACTES with Some Casuistics

  • Popis výsledku anglicky

    Each patient has his/her own individual characteristics. It is given by his/her main diagnosis and its detailed description (e.g., in oncology by TNM classification, grading, histological type etc.), comorbidities, results of genetic markers, biomarkers and many other factors. Standard patient care is usually based on the results of large clinical trials. This approach ignores the patient’s individuality. Using patient profiling based on tumor characteristics, genetic markers and biomarkers, it is possible to identify the drug with the highest clinical benefit for small patient groups where, according to the guidelines, treatment choice is no longer defined only by diagnosis and TNM classification. This procedure belongs to the area of personalized medicine. An important methodology is how to find similar patients to a newcomer and how to evaluate clinical benefits and risks of different types of therapies in this group of similar patients. The main focus is on overall survival, but time to progression and adverse reactions to treatment are also important. Based on extensive patient data available in electronic medical records (hospital information systems), similar cases to a newcomer can be identified and some statistics for these similar patients can be provided.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Journal of Scientific & Technical Research

  • ISSN

    2574-1241

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    4

  • Strana od-do

    21762-21765

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus