Biomarkers in Combination with Other Prognostic and Predictive Factors - Individualized Multivariate Statistical Models for Risk and Probability Estimation in Oncology. Implementation into software BIANTA and CRACTES with Some Casuistics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534206" target="_blank" >RIV/67985807:_____/20:00534206 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/20:00344089
Výsledek na webu
<a href="https://biomedres.us/pdfs/BJSTR.MS.ID.004676.pdf" target="_blank" >https://biomedres.us/pdfs/BJSTR.MS.ID.004676.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26717/BJSTR.2020.28.004676" target="_blank" >10.26717/BJSTR.2020.28.004676</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biomarkers in Combination with Other Prognostic and Predictive Factors - Individualized Multivariate Statistical Models for Risk and Probability Estimation in Oncology. Implementation into software BIANTA and CRACTES with Some Casuistics
Popis výsledku v původním jazyce
Each patient has his/her own individual characteristics. It is given by his/her main diagnosis and its detailed description (e.g., in oncology by TNM classification, grading, histological type etc.), comorbidities, results of genetic markers, biomarkers and many other factors. Standard patient care is usually based on the results of large clinical trials. This approach ignores the patient’s individuality. Using patient profiling based on tumor characteristics, genetic markers and biomarkers, it is possible to identify the drug with the highest clinical benefit for small patient groups where, according to the guidelines, treatment choice is no longer defined only by diagnosis and TNM classification. This procedure belongs to the area of personalized medicine. An important methodology is how to find similar patients to a newcomer and how to evaluate clinical benefits and risks of different types of therapies in this group of similar patients. The main focus is on overall survival, but time to progression and adverse reactions to treatment are also important. Based on extensive patient data available in electronic medical records (hospital information systems), similar cases to a newcomer can be identified and some statistics for these similar patients can be provided.
Název v anglickém jazyce
Biomarkers in Combination with Other Prognostic and Predictive Factors - Individualized Multivariate Statistical Models for Risk and Probability Estimation in Oncology. Implementation into software BIANTA and CRACTES with Some Casuistics
Popis výsledku anglicky
Each patient has his/her own individual characteristics. It is given by his/her main diagnosis and its detailed description (e.g., in oncology by TNM classification, grading, histological type etc.), comorbidities, results of genetic markers, biomarkers and many other factors. Standard patient care is usually based on the results of large clinical trials. This approach ignores the patient’s individuality. Using patient profiling based on tumor characteristics, genetic markers and biomarkers, it is possible to identify the drug with the highest clinical benefit for small patient groups where, according to the guidelines, treatment choice is no longer defined only by diagnosis and TNM classification. This procedure belongs to the area of personalized medicine. An important methodology is how to find similar patients to a newcomer and how to evaluate clinical benefits and risks of different types of therapies in this group of similar patients. The main focus is on overall survival, but time to progression and adverse reactions to treatment are also important. Based on extensive patient data available in electronic medical records (hospital information systems), similar cases to a newcomer can be identified and some statistics for these similar patients can be provided.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Journal of Scientific & Technical Research
ISSN
2574-1241
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
4
Strana od-do
21762-21765
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—