Bounds on the Size of PC and URC Formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00536433" target="_blank" >RIV/67985807:_____/20:00536433 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/20:10424839
Výsledek na webu
<a href="http://hdl.handle.net/11104/0314210" target="_blank" >http://hdl.handle.net/11104/0314210</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1613/JAIR.1.12006" target="_blank" >10.1613/JAIR.1.12006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounds on the Size of PC and URC Formulas
Popis výsledku v původním jazyce
In this paper, we investigate CNF encodings, for which unit propagation is strong enough to derive a contradiction if the encoding is not consistent with a partial assignment of the variables (unit refutation complete or URC encoding) or additionally to derive all implied literals if the encoding is consistent with the partial assignment (propagation complete or PC encoding). We prove an exponential separation between the sizes of PC and URC encodings without auxiliary variables and strengthen the known results on their relationship to the PC and URC encodings that can use auxiliary variables. Besides of this, we prove that the sizes of any two irredundant PC formulas representing the same function differ at most by a factor polynomial in the number of the variables and present an example of a function demonstrating that a similar statement is not true for URC formulas. One of the separations above implies that a q-Horn formula may require an exponential number of additional clauses to become a URC formula. On the other hand, for every q-Horn formula, we present a polynomial size URC encoding of the same function using auxiliary variables. This encoding is not q-Horn in general.
Název v anglickém jazyce
Bounds on the Size of PC and URC Formulas
Popis výsledku anglicky
In this paper, we investigate CNF encodings, for which unit propagation is strong enough to derive a contradiction if the encoding is not consistent with a partial assignment of the variables (unit refutation complete or URC encoding) or additionally to derive all implied literals if the encoding is consistent with the partial assignment (propagation complete or PC encoding). We prove an exponential separation between the sizes of PC and URC encodings without auxiliary variables and strengthen the known results on their relationship to the PC and URC encodings that can use auxiliary variables. Besides of this, we prove that the sizes of any two irredundant PC formulas representing the same function differ at most by a factor polynomial in the number of the variables and present an example of a function demonstrating that a similar statement is not true for URC formulas. One of the separations above implies that a q-Horn formula may require an exponential number of additional clauses to become a URC formula. On the other hand, for every q-Horn formula, we present a polynomial size URC encoding of the same function using auxiliary variables. This encoding is not q-Horn in general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-19463S" target="_blank" >GA19-19463S: Reprezentace booleovských funkcí úplné vzhledem k jednotkové propagaci</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence Research
ISSN
1076-9757
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
24 December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1395-1420
Kód UT WoS článku
000606811900034
EID výsledku v databázi Scopus
2-s2.0-85099380435