Propagation Complete Encodings of Smooth DNNF Theories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00559241" target="_blank" >RIV/67985807:_____/22:00559241 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10452224
Výsledek na webu
<a href="https://dx.doi.org/10.1007/s10601-022-09331-2" target="_blank" >https://dx.doi.org/10.1007/s10601-022-09331-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10601-022-09331-2" target="_blank" >10.1007/s10601-022-09331-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Propagation Complete Encodings of Smooth DNNF Theories
Popis výsledku v původním jazyce
We investigate conjunctive normal form (CNF) encodings of a function represented with a decomposable negation normal form (DNNF). Several encodings of DNNFs and decision diagrams were considered by (Abio et al., 2016). The authors differentiate between encodings which implement consistency or domain consistency by unit propagation from encodings which are unit refutation complete or propagation complete. The difference is that in the former case we do not care about propagation strength of the encoding with respect to the auxiliary variables while in the latter case we treat all variables (the main and the auxiliary ones) in the same way. The currently known encodings of DNNF theories implement domain consistency. Building on these encodings we generalize the result of (Abio et al., 2016) on a propagation complete encoding of decision diagrams and present a propagation complete encoding of a DNNF and its generalization for variables with finite domains.
Název v anglickém jazyce
Propagation Complete Encodings of Smooth DNNF Theories
Popis výsledku anglicky
We investigate conjunctive normal form (CNF) encodings of a function represented with a decomposable negation normal form (DNNF). Several encodings of DNNFs and decision diagrams were considered by (Abio et al., 2016). The authors differentiate between encodings which implement consistency or domain consistency by unit propagation from encodings which are unit refutation complete or propagation complete. The difference is that in the former case we do not care about propagation strength of the encoding with respect to the auxiliary variables while in the latter case we treat all variables (the main and the auxiliary ones) in the same way. The currently known encodings of DNNF theories implement domain consistency. Building on these encodings we generalize the result of (Abio et al., 2016) on a propagation complete encoding of decision diagrams and present a propagation complete encoding of a DNNF and its generalization for variables with finite domains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-19463S" target="_blank" >GA19-19463S: Reprezentace booleovských funkcí úplné vzhledem k jednotkové propagaci</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Constraints
ISSN
1383-7133
e-ISSN
1572-9354
Svazek periodika
27
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
33
Strana od-do
327-359
Kód UT WoS článku
000805699300002
EID výsledku v databázi Scopus
2-s2.0-85131328469