Poisson Graphical Granger Causality by Minimum Message Length
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00539725" target="_blank" >RIV/67985807:_____/21:00539725 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-67658-2_30" target="_blank" >http://dx.doi.org/10.1007/978-3-030-67658-2_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-67658-2_30" target="_blank" >10.1007/978-3-030-67658-2_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Poisson Graphical Granger Causality by Minimum Message Length
Popis výsledku v původním jazyce
Graphical Granger models are popular models for causal inference among time series. In this paper we focus on the Poisson graphical Granger model where the time series follow Poisson distribution. We use minimum message length principle for determination of causal connections in the model. Based on the dispersion coefficient of each time series and on the initial maximum likelihood estimates of the regression coefficients, we propose a minimum message length criterion to select the subset of causally connected time series with each target time series. We propose a genetic-type algorithm to find this set. To our best knowledge, this is the first work on applying the minimum message length principle to the Poisson graphical Granger model. Common graphical Granger models are usually applied in scenarios when the number of time observations is much greater than the number of time series, normally by several orders of magnitude. In the opposite case of “short” time series, these methods often suffer from overestimation. We demonstrate in the experiments with synthetic Poisson and point process time series that our method is for short time series superior in precision to the compared causal inference methods, i.e. the heterogeneous Granger causality method, the Bayesian causal inference method using structural equation models LINGAM and the point process Granger causality.
Název v anglickém jazyce
Poisson Graphical Granger Causality by Minimum Message Length
Popis výsledku anglicky
Graphical Granger models are popular models for causal inference among time series. In this paper we focus on the Poisson graphical Granger model where the time series follow Poisson distribution. We use minimum message length principle for determination of causal connections in the model. Based on the dispersion coefficient of each time series and on the initial maximum likelihood estimates of the regression coefficients, we propose a minimum message length criterion to select the subset of causally connected time series with each target time series. We propose a genetic-type algorithm to find this set. To our best knowledge, this is the first work on applying the minimum message length principle to the Poisson graphical Granger model. Common graphical Granger models are usually applied in scenarios when the number of time observations is much greater than the number of time series, normally by several orders of magnitude. In the opposite case of “short” time series, these methods often suffer from overestimation. We demonstrate in the experiments with synthetic Poisson and point process time series that our method is for short time series superior in precision to the compared causal inference methods, i.e. the heterogeneous Granger causality method, the Bayesian causal inference method using structural equation models LINGAM and the point process Granger causality.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Machine Learning and Knowledge Discovery in Databases. Proceedings, Part 1
ISBN
978-3-030-67657-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
16
Strana od-do
526-541
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ghent / Virtual
Datum konání akce
14. 9. 2020
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000717522300030