Causal Discovery in Hawkes Processes by Minimum Description Length
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00569861" target="_blank" >RIV/67985807:_____/22:00569861 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/20656/20415" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/20656/20415</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Causal Discovery in Hawkes Processes by Minimum Description Length
Popis výsledku v původním jazyce
Hawkes processes are a special class of temporal point processes which exhibit a natural notion of causality, as occurrence of events in the past may increase the probability of events in the future. Discovery of the underlying infuence network among the dimensions of multi-dimensional temporal processes is of high importance in disciplines where a high-frequency data is to model, e.g. in fnancial data or in seismological data. This paper approaches the problem of learning Granger-causal network in multi-dimensional Hawkes processes. We formulate this problem as a model selection task in which we follow the minimum description length (MDL) principle. Moreover, we propose a general algorithm for MDL-based inference using a Monte-Carlo method and we use it for our causal discovery problem. We compare our algorithm with the state-of-the-art baseline methods on synthetic and real-world fnancial data. The synthetic experiments demonstrate superiority of our method in causal graph discovery compared to the baseline methods with respect to the size of the data. The results of experiments with the G-7 bonds price data are consistent with the experts’ knowledge.
Název v anglickém jazyce
Causal Discovery in Hawkes Processes by Minimum Description Length
Popis výsledku anglicky
Hawkes processes are a special class of temporal point processes which exhibit a natural notion of causality, as occurrence of events in the past may increase the probability of events in the future. Discovery of the underlying infuence network among the dimensions of multi-dimensional temporal processes is of high importance in disciplines where a high-frequency data is to model, e.g. in fnancial data or in seismological data. This paper approaches the problem of learning Granger-causal network in multi-dimensional Hawkes processes. We formulate this problem as a model selection task in which we follow the minimum description length (MDL) principle. Moreover, we propose a general algorithm for MDL-based inference using a Monte-Carlo method and we use it for our causal discovery problem. We compare our algorithm with the state-of-the-art baseline methods on synthetic and real-world fnancial data. The synthetic experiments demonstrate superiority of our method in causal graph discovery compared to the baseline methods with respect to the size of the data. The results of experiments with the G-7 bonds price data are consistent with the experts’ knowledge.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 36th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-876-3
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
10
Strana od-do
6978-6987
Název nakladatele
AAAI Press
Místo vydání
Palo Alto
Místo konání akce
Online
Datum konání akce
22. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000893636207010