Boundary heat diffusion classifier for a semi-supervised learning in a multilayer network embedding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F22%3A00079087" target="_blank" >RIV/00209805:_____/22:00079087 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/22:00127569
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0893608022003896?token=87052F21165A84F9A10A2D99E68C26C9B30322FAA8182BD2B19D0A8AD0A1CAEB35F609AC4BEA2238E580F23CB27042A7&originRegion=eu-west-1&originCreation=20221110130755" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0893608022003896?token=87052F21165A84F9A10A2D99E68C26C9B30322FAA8182BD2B19D0A8AD0A1CAEB35F609AC4BEA2238E580F23CB27042A7&originRegion=eu-west-1&originCreation=20221110130755</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2022.10.005" target="_blank" >10.1016/j.neunet.2022.10.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boundary heat diffusion classifier for a semi-supervised learning in a multilayer network embedding
Popis výsledku v původním jazyce
The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
Název v anglickém jazyce
Boundary heat diffusion classifier for a semi-supervised learning in a multilayer network embedding
Popis výsledku anglicky
The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural networks: the official journal of the International Neural Network Society
ISSN
0893-6080
e-ISSN
1879-2782
Svazek periodika
156
Číslo periodika v rámci svazku
December 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
205-217
Kód UT WoS článku
000886066900007
EID výsledku v databázi Scopus
2-s2.0-85140088729