Epistemic Extensions of Substructural Inquisitive Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00542814" target="_blank" >RIV/67985807:_____/21:00542814 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/logcom/exab008" target="_blank" >http://dx.doi.org/10.1093/logcom/exab008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exab008" target="_blank" >10.1093/logcom/exab008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Epistemic Extensions of Substructural Inquisitive Logics
Popis výsledku v původním jazyce
In this paper, we study the epistemic extensions of distributive substructural inquisitive logics. Substructural inquisitive logics are logics of questions based on substructural logics of declarative sentences. They generalize basic inquisitive logic which is based on the classical logic of declaratives. We show that if the underlying substructural logic is distributive, the generalization can be extended to embrace also the epistemic modalities ‘knowing whether’ and ‘wondering whether’ that are applicable to questions. We construct a semantic framework for a language of propositional substructural logics enriched with a question-forming operator (inquisitive disjunction) and epistemic modalities. We show that within this framework, one can define a canonical model with suitable properties for any (syntactically defined) epistemic inquisitive logic. This leads to a general approach to completeness proofs for such logics. A deductive system for the weakest epistemic inquisitive logic is described and completeness proved for this special case using the general method.
Název v anglickém jazyce
Epistemic Extensions of Substructural Inquisitive Logics
Popis výsledku anglicky
In this paper, we study the epistemic extensions of distributive substructural inquisitive logics. Substructural inquisitive logics are logics of questions based on substructural logics of declarative sentences. They generalize basic inquisitive logic which is based on the classical logic of declaratives. We show that if the underlying substructural logic is distributive, the generalization can be extended to embrace also the epistemic modalities ‘knowing whether’ and ‘wondering whether’ that are applicable to questions. We construct a semantic framework for a language of propositional substructural logics enriched with a question-forming operator (inquisitive disjunction) and epistemic modalities. We show that within this framework, one can define a canonical model with suitable properties for any (syntactically defined) epistemic inquisitive logic. This leads to a general approach to completeness proofs for such logics. A deductive system for the weakest epistemic inquisitive logic is described and completeness proved for this special case using the general method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-19162Y" target="_blank" >GJ18-19162Y: Neklasické logické modely informační dynamiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
1465-363X
Svazek periodika
31
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
1820-1844
Kód UT WoS článku
000715358800011
EID výsledku v databázi Scopus
2-s2.0-85119488751