Correlations of Random Classifiers on Large Data Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00543168" target="_blank" >RIV/67985807:_____/21:00543168 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00500-021-05938-4" target="_blank" >http://dx.doi.org/10.1007/s00500-021-05938-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-021-05938-4" target="_blank" >10.1007/s00500-021-05938-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Correlations of Random Classifiers on Large Data Sets
Popis výsledku v původním jazyce
Classification of large data sets by feedforward neural networks is investigated. To deal with unmanageably large sets of classification tasks, a probabilistic model of their relevance is considered. Optimization of networks computing randomly chosen classifiers is studied in terms of correlations of classifiers with network input-output functions. Effects of increasing sizes of sets of data to be classified are analyzed using geometrical properties of high-dimensional spaces. Their consequences on concentrations of values of sufficiently smooth functions of random variables around their mean values are applied. It is shown that the critical factor for suitability of a class of networks for computing randomly chosen classifiers is the maximum of sizes of the mean values of their correlations with network input-output functions. To include cases in which function values are not independent, the method of bounded differences is exploited.
Název v anglickém jazyce
Correlations of Random Classifiers on Large Data Sets
Popis výsledku anglicky
Classification of large data sets by feedforward neural networks is investigated. To deal with unmanageably large sets of classification tasks, a probabilistic model of their relevance is considered. Optimization of networks computing randomly chosen classifiers is studied in terms of correlations of classifiers with network input-output functions. Effects of increasing sizes of sets of data to be classified are analyzed using geometrical properties of high-dimensional spaces. Their consequences on concentrations of values of sufficiently smooth functions of random variables around their mean values are applied. It is shown that the critical factor for suitability of a class of networks for computing randomly chosen classifiers is the maximum of sizes of the mean values of their correlations with network input-output functions. To include cases in which function values are not independent, the method of bounded differences is exploited.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft Computing
ISSN
1432-7643
e-ISSN
1433-7479
Svazek periodika
25
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
12641-12648
Kód UT WoS článku
000661788300004
EID výsledku v databázi Scopus
2-s2.0-85107955110