Simplicial and Topological Descriptions of Human Brain Dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00544003" target="_blank" >RIV/67985807:_____/21:00544003 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1162/netn_a_00190" target="_blank" >http://dx.doi.org/10.1162/netn_a_00190</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/netn_a_00190" target="_blank" >10.1162/netn_a_00190</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplicial and Topological Descriptions of Human Brain Dynamics
Popis výsledku v původním jazyce
While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data's apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain's functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data's topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, we find that those that track topological features optimally distinguish experimentally defined brain states.
Název v anglickém jazyce
Simplicial and Topological Descriptions of Human Brain Dynamics
Popis výsledku anglicky
While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data's apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain's functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data's topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, we find that those that track topological features optimally distinguish experimentally defined brain states.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Network Neuroscience
ISSN
2472-1751
e-ISSN
2472-1751
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
549-568
Kód UT WoS článku
000663433500012
EID výsledku v databázi Scopus
2-s2.0-85108277345