Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Air Pollution Modelling by Machine Learning Methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00548678" target="_blank" >RIV/67985807:_____/21:00548678 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3390/modelling2040035" target="_blank" >http://dx.doi.org/10.3390/modelling2040035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/modelling2040035" target="_blank" >10.3390/modelling2040035</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Air Pollution Modelling by Machine Learning Methods

  • Popis výsledku v původním jazyce

    Precise environmental modelling of pollutants distributions represents a key factor for addresing the issue of urban air pollution. Nowadays, urban air pollution monitoring is primarily carried out by employing sparse networks of spatially distributed fixed stations. The work in this paper aims at improving the situation by utilizing machine learning models to process the outputs of multi-sensor devices that are small, cheap, albeit less reliable, thus a massive urban deployment of those devices is possible. The main contribution of the paper is the design of a mathematical model providing sensor fusion to extract the information and transform it into the desired pollutant concentrations. Multi-sensor outputs are used as input information for a particular machine learning model trained to produce the CO, NO2, and NOx concentration estimates. Several state-of-the-art machine learning methods, including original algorithms proposed by the authors, are utilized in this study: kernel methods, regularization networks, regularization networks with composite kernels, and deep neural networks. All methods are augmented with a proper hyper-parameter search to achieve the optimal performance for each model. All the methods considered achieved vital results, deep neural networks exhibited the best generalization ability, and regularization networks with product kernels achieved the best fitting of the training set.

  • Název v anglickém jazyce

    Air Pollution Modelling by Machine Learning Methods

  • Popis výsledku anglicky

    Precise environmental modelling of pollutants distributions represents a key factor for addresing the issue of urban air pollution. Nowadays, urban air pollution monitoring is primarily carried out by employing sparse networks of spatially distributed fixed stations. The work in this paper aims at improving the situation by utilizing machine learning models to process the outputs of multi-sensor devices that are small, cheap, albeit less reliable, thus a massive urban deployment of those devices is possible. The main contribution of the paper is the design of a mathematical model providing sensor fusion to extract the information and transform it into the desired pollutant concentrations. Multi-sensor outputs are used as input information for a particular machine learning model trained to produce the CO, NO2, and NOx concentration estimates. Several state-of-the-art machine learning methods, including original algorithms proposed by the authors, are utilized in this study: kernel methods, regularization networks, regularization networks with composite kernels, and deep neural networks. All methods are augmented with a proper hyper-parameter search to achieve the optimal performance for each model. All the methods considered achieved vital results, deep neural networks exhibited the best generalization ability, and regularization networks with product kernels achieved the best fitting of the training set.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-23827S" target="_blank" >GA18-23827S: Schopnosti a omezení mělkých a hlubokých sítí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Modelling

  • ISSN

    2673-3951

  • e-ISSN

    2673-3951

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    659-674

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus