Fast Three-Valued Abstract Bit-Vector Arithmetic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00556720" target="_blank" >RIV/67985807:_____/22:00556720 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/22:00354870
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-94583-1_12" target="_blank" >http://dx.doi.org/10.1007/978-3-030-94583-1_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-94583-1_12" target="_blank" >10.1007/978-3-030-94583-1_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast Three-Valued Abstract Bit-Vector Arithmetic
Popis výsledku v původním jazyce
Abstraction is one of the most important approaches for reducing the number of states in formal verification. An important abstraction technique is the usage of three-valued logic, extensible to bit-vectors. The best abstract bit-vector results for movement and logical operations can be computed quickly. However, for widely-used arithmetic operations, efficient algorithms for computation of the best possible output have not been known up to now. In this paper, we present new efficient polynomial-time algorithms for abstract addition and multiplication with three-valued bit-vector inputs. These algorithms produce the best possible three-valued bit-vector output and remain fast even with 32-bit inputs. To obtain the algorithms, we devise a novel modular extreme-finding technique via reformulation of the problem using pseudo-Boolean modular inequalities. Using the introduced technique, we construct an algorithm for abstract addition that computes its result in linear time, as well as a worst-case quadratic-time algorithm for abstract multiplication. Finally, we experimentally evaluate the performance of the algorithms, confirming their practical efficiency.
Název v anglickém jazyce
Fast Three-Valued Abstract Bit-Vector Arithmetic
Popis výsledku anglicky
Abstraction is one of the most important approaches for reducing the number of states in formal verification. An important abstraction technique is the usage of three-valued logic, extensible to bit-vectors. The best abstract bit-vector results for movement and logical operations can be computed quickly. However, for widely-used arithmetic operations, efficient algorithms for computation of the best possible output have not been known up to now. In this paper, we present new efficient polynomial-time algorithms for abstract addition and multiplication with three-valued bit-vector inputs. These algorithms produce the best possible three-valued bit-vector output and remain fast even with 32-bit inputs. To obtain the algorithms, we devise a novel modular extreme-finding technique via reformulation of the problem using pseudo-Boolean modular inequalities. Using the introduced technique, we construct an algorithm for abstract addition that computes its result in linear time, as well as a worst-case quadratic-time algorithm for abstract multiplication. Finally, we experimentally evaluate the performance of the algorithms, confirming their practical efficiency.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Verification, Model Checking, and Abstract Interpretation
ISBN
978-3-030-94582-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
21
Strana od-do
242-262
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Philadelphia
Datum konání akce
16. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001059208500012