Localized Codegree Conditions for Tight Hamilton Cycles in 3-Uniform Hypergraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00556853" target="_blank" >RIV/67985807:_____/22:00556853 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/21M1408531" target="_blank" >http://dx.doi.org/10.1137/21M1408531</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1408531" target="_blank" >10.1137/21M1408531</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Localized Codegree Conditions for Tight Hamilton Cycles in 3-Uniform Hypergraphs
Popis výsledku v původním jazyce
We study sufficient conditions for the existence of Hamilton cycles in uniformly dense 3-uniform hypergraphs. Problems of this type were first considered by Lenz, Mubayi, and Mycroft for loose Hamilton cycles, and Aigner-Horev and Levy considered them for tight Hamilton cycles for a fairly strong notion of uniformly dense hypergraphs. We focus on tight cycles and obtain optimal results for a weaker notion of uniformly dense hypergraphs. We show that if an n-vertex 3-uniform hypergraph H = (V, E) has the property that for any set of vertices X and for any collection P of pairs of vertices, the number of hyperedges composed by a pair belonging to P and one vertex from X is at least (1/4 +o(1))vertical bar X vertical bar vertical bar P vertical bar- o(vertical bar V vertical bar(3)) and H has minimum vertex degree at least Omega(vertical bar V vertical bar(2)), then H contains a tight Hamilton cycle. A probabilistic construction shows that the constant 1/4 is optimal in this context.
Název v anglickém jazyce
Localized Codegree Conditions for Tight Hamilton Cycles in 3-Uniform Hypergraphs
Popis výsledku anglicky
We study sufficient conditions for the existence of Hamilton cycles in uniformly dense 3-uniform hypergraphs. Problems of this type were first considered by Lenz, Mubayi, and Mycroft for loose Hamilton cycles, and Aigner-Horev and Levy considered them for tight Hamilton cycles for a fairly strong notion of uniformly dense hypergraphs. We focus on tight cycles and obtain optimal results for a weaker notion of uniformly dense hypergraphs. We show that if an n-vertex 3-uniform hypergraph H = (V, E) has the property that for any set of vertices X and for any collection P of pairs of vertices, the number of hyperedges composed by a pair belonging to P and one vertex from X is at least (1/4 +o(1))vertical bar X vertical bar vertical bar P vertical bar- o(vertical bar V vertical bar(3)) and H has minimum vertex degree at least Omega(vertical bar V vertical bar(2)), then H contains a tight Hamilton cycle. A probabilistic construction shows that the constant 1/4 is optimal in this context.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
147-169
Kód UT WoS článku
000778502000008
EID výsledku v databázi Scopus
2-s2.0-85128397699