Robust Causal Inference for Irregularly Sampled Time Series: Applications in Climate and Paleoclimate Data Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00558291" target="_blank" >RIV/67985807:_____/22:00558291 - isvavai.cz</a>
Výsledek na webu
<a href="https://meetingorganizer.copernicus.org/EGU22/EGU22-4795.html" target="_blank" >https://meetingorganizer.copernicus.org/EGU22/EGU22-4795.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Causal Inference for Irregularly Sampled Time Series: Applications in Climate and Paleoclimate Data Analysis
Popis výsledku v původním jazyce
To predict and determine the major drivers of climate has become even more important now as climate change poses a big challenge to humankind and our planet earth. Different studies employ either correlation, causality methods or modelling approaches to study the interaction between climate and climate forcing variables (anthropogenic or natural). This includes the study of interaction between global surface temperatures and CO2 rainfall in different locations and El Niño–Southern Oscillation (ENSO) phenomena. The results produced by different studies have been found to be different and debatable, presenting an ambiguous situation. In this work, we develop and apply a novel robust causality estimation technique for time-series data (to estimate causal influence between given observables), that can help to resolve the ambiguity
Název v anglickém jazyce
Robust Causal Inference for Irregularly Sampled Time Series: Applications in Climate and Paleoclimate Data Analysis
Popis výsledku anglicky
To predict and determine the major drivers of climate has become even more important now as climate change poses a big challenge to humankind and our planet earth. Different studies employ either correlation, causality methods or modelling approaches to study the interaction between climate and climate forcing variables (anthropogenic or natural). This includes the study of interaction between global surface temperatures and CO2 rainfall in different locations and El Niño–Southern Oscillation (ENSO) phenomena. The results produced by different studies have been found to be different and debatable, presenting an ambiguous situation. In this work, we develop and apply a novel robust causality estimation technique for time-series data (to estimate causal influence between given observables), that can help to resolve the ambiguity
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů