Model Choice for Regression Models with a Categorical Response
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00558999" target="_blank" >RIV/67985807:_____/22:00558999 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10454230
Výsledek na webu
<a href="https://dx.doi.org/10.2478/jamsi-2022-0005" target="_blank" >https://dx.doi.org/10.2478/jamsi-2022-0005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/jamsi-2022-0005" target="_blank" >10.2478/jamsi-2022-0005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model Choice for Regression Models with a Categorical Response
Popis výsledku v původním jazyce
The multinomial logit model and the cumulative logit model represent two important tools for regression modeling with a categorical response with numerous applications in various fields. First, this paper presents a systematic review of these two models including available tools for model choice (model selection). Then, numerical experiments are presented for two real datasets with an ordinal categorical response. These experiments reveal that a backward model choice procedure by means of hypothesis testing is more effective compared to a procedure based on Akaike information criterion. While the tendency of the backward selection to be superior to Akaike information criterion has recently been justified in linear regression, such a result seems not to have been presented for models with a categorical response. In addition, we report a mistake in VGAM package of R software, which has however no influence on the process of model choice.
Název v anglickém jazyce
Model Choice for Regression Models with a Categorical Response
Popis výsledku anglicky
The multinomial logit model and the cumulative logit model represent two important tools for regression modeling with a categorical response with numerous applications in various fields. First, this paper presents a systematic review of these two models including available tools for model choice (model selection). Then, numerical experiments are presented for two real datasets with an ordinal categorical response. These experiments reveal that a backward model choice procedure by means of hypothesis testing is more effective compared to a procedure based on Akaike information criterion. While the tendency of the backward selection to be superior to Akaike information criterion has recently been justified in linear regression, such a result seems not to have been presented for models with a categorical response. In addition, we report a mistake in VGAM package of R software, which has however no influence on the process of model choice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-19311S" target="_blank" >GA21-19311S: Informační tok a ekvilibrium ve finančních trzích</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of applied mathematics, statistics and informatics
ISSN
1336-9180
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
13
Strana od-do
59-71
Kód UT WoS článku
000820112700005
EID výsledku v databázi Scopus
—