Human Brain Structural Connectivity Matrices-Ready for Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560334" target="_blank" >RIV/67985807:_____/22:00560334 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00023752:_____/22:43920899 RIV/00023001:_____/22:00083444 RIV/68407700:21230/22:00358939
Výsledek na webu
<a href="https://dx.doi.org/10.1038/s41597-022-01596-9" target="_blank" >https://dx.doi.org/10.1038/s41597-022-01596-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41597-022-01596-9" target="_blank" >10.1038/s41597-022-01596-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Human Brain Structural Connectivity Matrices-Ready for Modelling
Popis výsledku v původním jazyce
The human brain represents a complex computational system, the function and structure of which may be measured using various neuroimaging techniques focusing on separate properties of the brain tissue and activity. We capture the organization of white matter fibers acquired by diffusion-weighted imaging using probabilistic diffusion tractography. By segmenting the results of tractography into larger anatomical units, it is possible to draw inferences about the structural relationships between these parts of the system. This pipeline results in a structural connectivity matrix, which contains an estimate of connection strength among all regions. However, raw data processing is complex, computationally intensive, and requires expert quality control, which may be discouraging for researchers with less experience in the field. We thus provide brain structural connectivity matrices in a form ready for modelling and analysis and thus usable by a wide community of scientists. The presented dataset contains brain structural connectivity matrices together with the underlying raw diffusion and structural data, as well as basic demographic data of 88 healthy subjects.
Název v anglickém jazyce
Human Brain Structural Connectivity Matrices-Ready for Modelling
Popis výsledku anglicky
The human brain represents a complex computational system, the function and structure of which may be measured using various neuroimaging techniques focusing on separate properties of the brain tissue and activity. We capture the organization of white matter fibers acquired by diffusion-weighted imaging using probabilistic diffusion tractography. By segmenting the results of tractography into larger anatomical units, it is possible to draw inferences about the structural relationships between these parts of the system. This pipeline results in a structural connectivity matrix, which contains an estimate of connection strength among all regions. However, raw data processing is complex, computationally intensive, and requires expert quality control, which may be discouraging for researchers with less experience in the field. We thus provide brain structural connectivity matrices in a form ready for modelling and analysis and thus usable by a wide community of scientists. The presented dataset contains brain structural connectivity matrices together with the underlying raw diffusion and structural data, as well as basic demographic data of 88 healthy subjects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Data
ISSN
2052-4463
e-ISSN
2052-4463
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
486
Kód UT WoS článku
000838094100001
EID výsledku v databázi Scopus
2-s2.0-85135728092