Promises and Pitfalls of Topological Data Analysis for Brain Connectivity Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00543460" target="_blank" >RIV/67985807:_____/21:00543460 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00023752:_____/21:43920630 RIV/68407700:21230/21:00357134
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.neuroimage.2021.118245" target="_blank" >http://dx.doi.org/10.1016/j.neuroimage.2021.118245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neuroimage.2021.118245" target="_blank" >10.1016/j.neuroimage.2021.118245</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Promises and Pitfalls of Topological Data Analysis for Brain Connectivity Analysis
Popis výsledku v původním jazyce
Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going beyond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain network analysis by testing its discriminatory power in two distinctive examples of disease-related brain connectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy from diseased brain states by applying a support vector machine to features quantifying persistent homology structure. We show how this novel approach compares to classification using standard undirected approaches and original connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to random, while classifications from raw connectivity perform substantially better, potentially due to topographical, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp electroencephalography data, classification based on persistent homology features generally reached comparable performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (effective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial electrophysiology with individual number and location of measurements. While standard homology performed overall better than directed homology, this could be due to notorious technical problems of accurate effective connectivity estimation.
Název v anglickém jazyce
Promises and Pitfalls of Topological Data Analysis for Brain Connectivity Analysis
Popis výsledku anglicky
Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going beyond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain network analysis by testing its discriminatory power in two distinctive examples of disease-related brain connectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy from diseased brain states by applying a support vector machine to features quantifying persistent homology structure. We show how this novel approach compares to classification using standard undirected approaches and original connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to random, while classifications from raw connectivity perform substantially better, potentially due to topographical, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp electroencephalography data, classification based on persistent homology features generally reached comparable performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (effective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial electrophysiology with individual number and location of measurements. While standard homology performed overall better than directed homology, this could be due to notorious technical problems of accurate effective connectivity estimation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neuroimage
ISSN
1053-8119
e-ISSN
1095-9572
Svazek periodika
238
Číslo periodika v rámci svazku
September 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
118245
Kód UT WoS článku
000679378500004
EID výsledku v databázi Scopus
2-s2.0-85109174654