Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Persistent homology to analyse disruptions of functional and effective brain connectivity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00568775" target="_blank" >RIV/67985807:_____/22:00568775 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dx.doi.org/10.5072/zenodo.1154242" target="_blank" >https://dx.doi.org/10.5072/zenodo.1154242</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Persistent homology to analyse disruptions of functional and effective brain connectivity

  • Popis výsledku v původním jazyce

    ZÁKLADNÍ ÚDAJE: The 11th International Conference on Complex Networks and their Applications - Book of Abstracts. Palermo: 12th International Conference on Complex Networks and their Applications, 2023. s. 513-514. ISBN 978-2-9557050-6-3. KONFERENCE: COMPLEX NETWORKS 2023: The 12th International Conference on Complex Networks and their Applications. 28.11.2023-30.11.2023, French Riviera]. ABSTRAKT: Topological Data Analysis (TDA [1]), despite its relative novelty, has already been applied to study network connectivity structure across fields. We propose that its prominent tool of persistent homology (PH) may apart from the more common dependence networks (functional connectivity – FC) be applied also to directed, causal, networks – known as effective connectivity (EC) in neuroscience. We test the PH discriminatory power in two archetypal examples of disease-related brain connectivity alterations: during epilepsy seizures (captured by electrophysiology – EEG) and in schizophrenia patients (using functional magnetic resonance imaging - fMRI). We employ a range of PH-based features and quantify ability to distinguish healthy from diseased brain states by applying a support vector machine (SVM), a relatively standard method of choice for similar data situations, used also previously in similar context. We compare this novel approach to using standard undirected PH applied to the functional connectivity matrix, as well as comparing the (D)PH approach to using the raw EC/FC matrices [2]

  • Název v anglickém jazyce

    Persistent homology to analyse disruptions of functional and effective brain connectivity

  • Popis výsledku anglicky

    ZÁKLADNÍ ÚDAJE: The 11th International Conference on Complex Networks and their Applications - Book of Abstracts. Palermo: 12th International Conference on Complex Networks and their Applications, 2023. s. 513-514. ISBN 978-2-9557050-6-3. KONFERENCE: COMPLEX NETWORKS 2023: The 12th International Conference on Complex Networks and their Applications. 28.11.2023-30.11.2023, French Riviera]. ABSTRAKT: Topological Data Analysis (TDA [1]), despite its relative novelty, has already been applied to study network connectivity structure across fields. We propose that its prominent tool of persistent homology (PH) may apart from the more common dependence networks (functional connectivity – FC) be applied also to directed, causal, networks – known as effective connectivity (EC) in neuroscience. We test the PH discriminatory power in two archetypal examples of disease-related brain connectivity alterations: during epilepsy seizures (captured by electrophysiology – EEG) and in schizophrenia patients (using functional magnetic resonance imaging - fMRI). We employ a range of PH-based features and quantify ability to distinguish healthy from diseased brain states by applying a support vector machine (SVM), a relatively standard method of choice for similar data situations, used also previously in similar context. We compare this novel approach to using standard undirected PH applied to the functional connectivity matrix, as well as comparing the (D)PH approach to using the raw EC/FC matrices [2]

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-17211S" target="_blank" >GA21-17211S: Síťové modely komplexních systémů: od korelačních grafů k informačním hypergrafům</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů