Persistent homology to analyse disruptions of functional and effective brain connectivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00568775" target="_blank" >RIV/67985807:_____/22:00568775 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.5072/zenodo.1154242" target="_blank" >https://dx.doi.org/10.5072/zenodo.1154242</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Persistent homology to analyse disruptions of functional and effective brain connectivity
Popis výsledku v původním jazyce
ZÁKLADNÍ ÚDAJE: The 11th International Conference on Complex Networks and their Applications - Book of Abstracts. Palermo: 12th International Conference on Complex Networks and their Applications, 2023. s. 513-514. ISBN 978-2-9557050-6-3. KONFERENCE: COMPLEX NETWORKS 2023: The 12th International Conference on Complex Networks and their Applications. 28.11.2023-30.11.2023, French Riviera]. ABSTRAKT: Topological Data Analysis (TDA [1]), despite its relative novelty, has already been applied to study network connectivity structure across fields. We propose that its prominent tool of persistent homology (PH) may apart from the more common dependence networks (functional connectivity – FC) be applied also to directed, causal, networks – known as effective connectivity (EC) in neuroscience. We test the PH discriminatory power in two archetypal examples of disease-related brain connectivity alterations: during epilepsy seizures (captured by electrophysiology – EEG) and in schizophrenia patients (using functional magnetic resonance imaging - fMRI). We employ a range of PH-based features and quantify ability to distinguish healthy from diseased brain states by applying a support vector machine (SVM), a relatively standard method of choice for similar data situations, used also previously in similar context. We compare this novel approach to using standard undirected PH applied to the functional connectivity matrix, as well as comparing the (D)PH approach to using the raw EC/FC matrices [2]
Název v anglickém jazyce
Persistent homology to analyse disruptions of functional and effective brain connectivity
Popis výsledku anglicky
ZÁKLADNÍ ÚDAJE: The 11th International Conference on Complex Networks and their Applications - Book of Abstracts. Palermo: 12th International Conference on Complex Networks and their Applications, 2023. s. 513-514. ISBN 978-2-9557050-6-3. KONFERENCE: COMPLEX NETWORKS 2023: The 12th International Conference on Complex Networks and their Applications. 28.11.2023-30.11.2023, French Riviera]. ABSTRAKT: Topological Data Analysis (TDA [1]), despite its relative novelty, has already been applied to study network connectivity structure across fields. We propose that its prominent tool of persistent homology (PH) may apart from the more common dependence networks (functional connectivity – FC) be applied also to directed, causal, networks – known as effective connectivity (EC) in neuroscience. We test the PH discriminatory power in two archetypal examples of disease-related brain connectivity alterations: during epilepsy seizures (captured by electrophysiology – EEG) and in schizophrenia patients (using functional magnetic resonance imaging - fMRI). We employ a range of PH-based features and quantify ability to distinguish healthy from diseased brain states by applying a support vector machine (SVM), a relatively standard method of choice for similar data situations, used also previously in similar context. We compare this novel approach to using standard undirected PH applied to the functional connectivity matrix, as well as comparing the (D)PH approach to using the raw EC/FC matrices [2]
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-17211S" target="_blank" >GA21-17211S: Síťové modely komplexních systémů: od korelačních grafů k informačním hypergrafům</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů