Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Informed Bayesian Survival Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560436" target="_blank" >RIV/67985807:_____/22:00560436 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dx.doi.org/10.1186/s12874-022-01676-9" target="_blank" >https://dx.doi.org/10.1186/s12874-022-01676-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12874-022-01676-9" target="_blank" >10.1186/s12874-022-01676-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Informed Bayesian Survival Analysis

  • Popis výsledku v původním jazyce

    We overview Bayesian estimation, hypothesis testing, and model-averaging and illustrate how they benefit parametric survival analysis. We contrast the Bayesian framework to the currently dominant frequentist approach and highlight advantages, such as seamless incorporation of historical data, continuous monitoring of evidence, and incorporating uncertainty about the true data generating process. We illustrate the application of the Bayesian approaches on an example data set from a colon cancer trial. We compare the Bayesian parametric survival analysis and frequentist models with AIC/BIC model selection in fixed-n and sequential designs with a simulation study. In the example data set, the Bayesian framework provided evidence for the absence of a positive treatment effect on disease-free survival in patients with resected colon cancer. Furthermore, the Bayesian sequential analysis would have terminated the trial 13.3 months earlier than the standard frequentist analysis. In a simulation study with sequential designs, the Bayesian framework on average reached a decision in almost half the time required by the frequentist counterparts, while maintaining the same power, and an appropriate false-positive rate. Under model misspecification, the Bayesian framework resulted in higher false-negative rate compared to the frequentist counterparts, which resulted in a higher proportion of undecided trials. In fixed-n designs, the Bayesian framework showed slightly higher power, slightly elevated error rates, and lower bias and RMSE when estimating treatment effects in small samples. We have made the analytic approach readily available in RoBSA R package. The outlined Bayesian framework provides several benefits when applied to parametric survival analyses. It uses data more efficiently, is capable of greatly shortening the length of clinical trials, and provides a richer set of inferences.

  • Název v anglickém jazyce

    Informed Bayesian Survival Analysis

  • Popis výsledku anglicky

    We overview Bayesian estimation, hypothesis testing, and model-averaging and illustrate how they benefit parametric survival analysis. We contrast the Bayesian framework to the currently dominant frequentist approach and highlight advantages, such as seamless incorporation of historical data, continuous monitoring of evidence, and incorporating uncertainty about the true data generating process. We illustrate the application of the Bayesian approaches on an example data set from a colon cancer trial. We compare the Bayesian parametric survival analysis and frequentist models with AIC/BIC model selection in fixed-n and sequential designs with a simulation study. In the example data set, the Bayesian framework provided evidence for the absence of a positive treatment effect on disease-free survival in patients with resected colon cancer. Furthermore, the Bayesian sequential analysis would have terminated the trial 13.3 months earlier than the standard frequentist analysis. In a simulation study with sequential designs, the Bayesian framework on average reached a decision in almost half the time required by the frequentist counterparts, while maintaining the same power, and an appropriate false-positive rate. Under model misspecification, the Bayesian framework resulted in higher false-negative rate compared to the frequentist counterparts, which resulted in a higher proportion of undecided trials. In fixed-n designs, the Bayesian framework showed slightly higher power, slightly elevated error rates, and lower bias and RMSE when estimating treatment effects in small samples. We have made the analytic approach readily available in RoBSA R package. The outlined Bayesian framework provides several benefits when applied to parametric survival analyses. It uses data more efficiently, is capable of greatly shortening the length of clinical trials, and provides a richer set of inferences.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BMC Medical Research Methodology

  • ISSN

    1471-2288

  • e-ISSN

    1471-2288

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    238

  • Kód UT WoS článku

    000852382600001

  • EID výsledku v databázi Scopus

    2-s2.0-85138128795