Adjusting for Publication Bias in JASP and R: Selection Models, PET-PEESE, and Robust Bayesian Meta-Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00562627" target="_blank" >RIV/67985807:_____/22:00562627 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.1177/25152459221109259" target="_blank" >https://dx.doi.org/10.1177/25152459221109259</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/25152459221109259" target="_blank" >10.1177/25152459221109259</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adjusting for Publication Bias in JASP and R: Selection Models, PET-PEESE, and Robust Bayesian Meta-Analysis
Popis výsledku v původním jazyce
Meta-analyses are essential for cumulative science, but their validity can be compromised by publication bias. To mitigate the impact of publication bias, one may apply publication-bias-adjustment techniques such as precision-effect test and precision-effect estimate with standard errors (PET-PEESE) and selection models. These methods, implemented in JASP and R, allow researchers without programming experience to conduct state-of-the-art publication-bias-adjusted meta-analysis. In this tutorial, we demonstrate how to conduct a publication-bias-adjusted meta-analysis in JASP and R and interpret the results. First, we explain two frequentist bias-correction methods: PET-PEESE and selection models. Second, we introduce robust Bayesian meta-analysis, a Bayesian approach that simultaneously considers both PET-PEESE and selection models. We illustrate the methodology on an example data set, provide an instructional video (https://bit.ly/pubbias) and an R-markdown script (https://osf. io/uhaew/), and discuss the interpretation of the results. Finally, we include concrete guidance on reporting the meta-analytic results in an academic article.
Název v anglickém jazyce
Adjusting for Publication Bias in JASP and R: Selection Models, PET-PEESE, and Robust Bayesian Meta-Analysis
Popis výsledku anglicky
Meta-analyses are essential for cumulative science, but their validity can be compromised by publication bias. To mitigate the impact of publication bias, one may apply publication-bias-adjustment techniques such as precision-effect test and precision-effect estimate with standard errors (PET-PEESE) and selection models. These methods, implemented in JASP and R, allow researchers without programming experience to conduct state-of-the-art publication-bias-adjusted meta-analysis. In this tutorial, we demonstrate how to conduct a publication-bias-adjusted meta-analysis in JASP and R and interpret the results. First, we explain two frequentist bias-correction methods: PET-PEESE and selection models. Second, we introduce robust Bayesian meta-analysis, a Bayesian approach that simultaneously considers both PET-PEESE and selection models. We illustrate the methodology on an example data set, provide an instructional video (https://bit.ly/pubbias) and an R-markdown script (https://osf. io/uhaew/), and discuss the interpretation of the results. Finally, we include concrete guidance on reporting the meta-analytic results in an academic article.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Methods and Practices in Psychological Science
ISSN
2515-2459
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000853051200001
EID výsledku v databázi Scopus
2-s2.0-85134908639