Robust Bayesian Meta-Analysis: Model-Averaging Across Complementary Publication Bias Adjustment Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00559478" target="_blank" >RIV/67985807:_____/23:00559478 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.1002/jrsm.1594" target="_blank" >https://dx.doi.org/10.1002/jrsm.1594</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jrsm.1594" target="_blank" >10.1002/jrsm.1594</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Bayesian Meta-Analysis: Model-Averaging Across Complementary Publication Bias Adjustment Methods
Popis výsledku v původním jazyce
Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed. However, recent simulation studies have shown the methods' performance to depend on the true data generating process, and no method consistently outperforms the others across a wide range of conditions. Unfortunately, when different methods lead to contradicting conclusions, researchers can choose those methods that lead to a desired outcome. To avoid the condition-dependent, all-or-none choice between competing methods and conflicting results, we extend robust Bayesian meta-analysis and model-average across two prominent approaches of adjusting for publication bias: (1) selection models of p-values and (2) models adjusting for small-study effects. The resulting model ensemble weights the estimates and the evidence for the absence/presence of the effect from the competing approaches with the support they receive from the data. Applications, simulations, and comparisons to preregistered, multi-lab replications demonstrate the benefits of Bayesian model-averaging of complementary publication bias adjustment methods.
Název v anglickém jazyce
Robust Bayesian Meta-Analysis: Model-Averaging Across Complementary Publication Bias Adjustment Methods
Popis výsledku anglicky
Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed. However, recent simulation studies have shown the methods' performance to depend on the true data generating process, and no method consistently outperforms the others across a wide range of conditions. Unfortunately, when different methods lead to contradicting conclusions, researchers can choose those methods that lead to a desired outcome. To avoid the condition-dependent, all-or-none choice between competing methods and conflicting results, we extend robust Bayesian meta-analysis and model-average across two prominent approaches of adjusting for publication bias: (1) selection models of p-values and (2) models adjusting for small-study effects. The resulting model ensemble weights the estimates and the evidence for the absence/presence of the effect from the competing approaches with the support they receive from the data. Applications, simulations, and comparisons to preregistered, multi-lab replications demonstrate the benefits of Bayesian model-averaging of complementary publication bias adjustment methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Research Synthesis Methods
ISSN
1759-2879
e-ISSN
1759-2887
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
99-116
Kód UT WoS článku
000837024800001
EID výsledku v databázi Scopus
2-s2.0-85135529330