Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graph Embedding for Neural Architecture Search with Input-Output Information

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560713" target="_blank" >RIV/67985807:_____/22:00560713 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graph Embedding for Neural Architecture Search with Input-Output Information

  • Popis výsledku v původním jazyce

    ZÁKLADNÍ ÚDAJE: Auto-ML Conf 2022: Accepted Papers: Late-Breaking Workshop. Baltimore: AutoML Conference, 2022. KONFERENCE: Auto-ML 2022: International Conference on Automated Machine Learning /1./. Baltimore (US), 25.07.2022-27.07.2022. ABSTRAKT: Graph representation learning has been widely used in neural architecture search as a part of performance prediction models. Existing works focused mostly on neural graph similarity without considering functionally similar networks with different architectures. In this work, we address this issue by using meta-information of input images and output features of a particular neural network. We extended the arch2vec model, a graph variational autoencoder for neural architecture search, to learn from this novel kind of data in a semi-supervised manner. We demonstrate our approach on the NAS-Bench-101 search space and the CIFAR10 dataset, and compare our model with the original arch2vec on a REINFORCE search task and a performance prediction task. We also present a semi-supervised accuracy predictor, and we discuss the advantages of both variants. The results are competitive with the original model and show improved performance.

  • Název v anglickém jazyce

    Graph Embedding for Neural Architecture Search with Input-Output Information

  • Popis výsledku anglicky

    ZÁKLADNÍ ÚDAJE: Auto-ML Conf 2022: Accepted Papers: Late-Breaking Workshop. Baltimore: AutoML Conference, 2022. KONFERENCE: Auto-ML 2022: International Conference on Automated Machine Learning /1./. Baltimore (US), 25.07.2022-27.07.2022. ABSTRAKT: Graph representation learning has been widely used in neural architecture search as a part of performance prediction models. Existing works focused mostly on neural graph similarity without considering functionally similar networks with different architectures. In this work, we address this issue by using meta-information of input images and output features of a particular neural network. We extended the arch2vec model, a graph variational autoencoder for neural architecture search, to learn from this novel kind of data in a semi-supervised manner. We demonstrate our approach on the NAS-Bench-101 search space and the CIFAR10 dataset, and compare our model with the original arch2vec on a REINFORCE search task and a performance prediction task. We also present a semi-supervised accuracy predictor, and we discuss the advantages of both variants. The results are competitive with the original model and show improved performance.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů