Graph Embedding for Neural Architecture Search with Input-Output Information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560713" target="_blank" >RIV/67985807:_____/22:00560713 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Embedding for Neural Architecture Search with Input-Output Information
Popis výsledku v původním jazyce
ZÁKLADNÍ ÚDAJE: Auto-ML Conf 2022: Accepted Papers: Late-Breaking Workshop. Baltimore: AutoML Conference, 2022. KONFERENCE: Auto-ML 2022: International Conference on Automated Machine Learning /1./. Baltimore (US), 25.07.2022-27.07.2022. ABSTRAKT: Graph representation learning has been widely used in neural architecture search as a part of performance prediction models. Existing works focused mostly on neural graph similarity without considering functionally similar networks with different architectures. In this work, we address this issue by using meta-information of input images and output features of a particular neural network. We extended the arch2vec model, a graph variational autoencoder for neural architecture search, to learn from this novel kind of data in a semi-supervised manner. We demonstrate our approach on the NAS-Bench-101 search space and the CIFAR10 dataset, and compare our model with the original arch2vec on a REINFORCE search task and a performance prediction task. We also present a semi-supervised accuracy predictor, and we discuss the advantages of both variants. The results are competitive with the original model and show improved performance.
Název v anglickém jazyce
Graph Embedding for Neural Architecture Search with Input-Output Information
Popis výsledku anglicky
ZÁKLADNÍ ÚDAJE: Auto-ML Conf 2022: Accepted Papers: Late-Breaking Workshop. Baltimore: AutoML Conference, 2022. KONFERENCE: Auto-ML 2022: International Conference on Automated Machine Learning /1./. Baltimore (US), 25.07.2022-27.07.2022. ABSTRAKT: Graph representation learning has been widely used in neural architecture search as a part of performance prediction models. Existing works focused mostly on neural graph similarity without considering functionally similar networks with different architectures. In this work, we address this issue by using meta-information of input images and output features of a particular neural network. We extended the arch2vec model, a graph variational autoencoder for neural architecture search, to learn from this novel kind of data in a semi-supervised manner. We demonstrate our approach on the NAS-Bench-101 search space and the CIFAR10 dataset, and compare our model with the original arch2vec on a REINFORCE search task and a performance prediction task. We also present a semi-supervised accuracy predictor, and we discuss the advantages of both variants. The results are competitive with the original model and show improved performance.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů