Label Propagation for Deep Semi-supervised Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335654" target="_blank" >RIV/68407700:21230/19:00335654 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8954421" target="_blank" >https://ieeexplore.ieee.org/document/8954421</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2019.00521" target="_blank" >10.1109/CVPR.2019.00521</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Label Propagation for Deep Semi-supervised Learning
Popis výsledku v původním jazyce
Semi-supervised learning is becoming increasingly important because it can combine data carefully labeled by humans with abundant unlabeled data to train deep neural networks. Classic methods on semi-supervised learning that have focused on transductive learning have not been fully exploited in the inductive framework followed by modern deep learning. The same holds for the manifold assumption---that similar examples should get the same prediction. In this work, we employ a transductive label propagation method that is based on the manifold assumption to make predictions on the entire dataset and use these predictions to generate pseudo-labels for the unlabeled data and train a deep neural network. At the core of the transductive method lies a nearest neighbor graph of the dataset that we create based on the embeddings of the same network. Therefore our learning process iterates between these two steps. We improve performance on several datasets especially in the few labels regime and show that our work is complementary to current state of the art.
Název v anglickém jazyce
Label Propagation for Deep Semi-supervised Learning
Popis výsledku anglicky
Semi-supervised learning is becoming increasingly important because it can combine data carefully labeled by humans with abundant unlabeled data to train deep neural networks. Classic methods on semi-supervised learning that have focused on transductive learning have not been fully exploited in the inductive framework followed by modern deep learning. The same holds for the manifold assumption---that similar examples should get the same prediction. In this work, we employ a transductive label propagation method that is based on the manifold assumption to make predictions on the entire dataset and use these predictions to generate pseudo-labels for the unlabeled data and train a deep neural network. At the core of the transductive method lies a nearest neighbor graph of the dataset that we create based on the embeddings of the same network. Therefore our learning process iterates between these two steps. We improve performance on several datasets especially in the few labels regime and show that our work is complementary to current state of the art.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-3293-8
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
5065-5074
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Long Beach
Datum konání akce
15. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—