Rational Pavelka logic: The best among three worlds?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00563350" target="_blank" >RIV/67985807:_____/23:00563350 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.fss.2022.08.010" target="_blank" >https://doi.org/10.1016/j.fss.2022.08.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.08.010" target="_blank" >10.1016/j.fss.2022.08.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rational Pavelka logic: The best among three worlds?
Popis výsledku v původním jazyce
This comparative survey explores three formal approaches to reasoning with partly true statements and degrees of truth, within the family of Łukasiewicz logic. These approaches are represented by infinite-valued Łukasiewicz logic (Ł), Rational Pavelka logic (RPL) and a logic with graded formulas that we refer to as Graded Rational Pavelka logic (GRPL). Truth constants for all rationals between 0 and 1 are used as a technical means to represent degrees of truth. Łukasiewicz logic ostensibly features no truth constants except 0 and 1, Rational Pavelka logic includes constants in the basic language, with suitable axioms, Graded Rational Pavelka logic works with graded formulas and proofs, following the original intent of Pavelka, inspired by Goguen's work. Historically, Pavelka's papers precede the definition of GRPL, which in turn precedes RPL. Retrieving these steps, we discuss how these formal systems naturally evolve from each other, and we also recall how this process has been a somewhat contentious issue in the realm of Łukasiewicz logic. This work can also be read as a case study in logics, their fragments, and the relationship of the fragments to a logic.
Název v anglickém jazyce
Rational Pavelka logic: The best among three worlds?
Popis výsledku anglicky
This comparative survey explores three formal approaches to reasoning with partly true statements and degrees of truth, within the family of Łukasiewicz logic. These approaches are represented by infinite-valued Łukasiewicz logic (Ł), Rational Pavelka logic (RPL) and a logic with graded formulas that we refer to as Graded Rational Pavelka logic (GRPL). Truth constants for all rationals between 0 and 1 are used as a technical means to represent degrees of truth. Łukasiewicz logic ostensibly features no truth constants except 0 and 1, Rational Pavelka logic includes constants in the basic language, with suitable axioms, Graded Rational Pavelka logic works with graded formulas and proofs, following the original intent of Pavelka, inspired by Goguen's work. Historically, Pavelka's papers precede the definition of GRPL, which in turn precedes RPL. Retrieving these steps, we discuss how these formal systems naturally evolve from each other, and we also recall how this process has been a somewhat contentious issue in the realm of Łukasiewicz logic. This work can also be read as a case study in logics, their fragments, and the relationship of the fragments to a logic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00113S" target="_blank" >GA18-00113S: Usuzování se stupňovanými vlastnostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
456
Číslo periodika v rámci svazku
March 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
92-106
Kód UT WoS článku
000939550700001
EID výsledku v databázi Scopus
2-s2.0-85137060216