Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards a dynamical understanding of microstate analysis of M/EEG data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00576873" target="_blank" >RIV/67985807:_____/23:00576873 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00023752:_____/23:43921168

  • Výsledek na webu

    <a href="https://dx.doi.org/10.1016/j.neuroimage.2023.120371" target="_blank" >https://dx.doi.org/10.1016/j.neuroimage.2023.120371</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neuroimage.2023.120371" target="_blank" >10.1016/j.neuroimage.2023.120371</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards a dynamical understanding of microstate analysis of M/EEG data

  • Popis výsledku v původním jazyce

    One of the interesting aspects of EEG data is the presence of temporally stable and spatially coherent patterns of activity, known as microstates, which have been linked to various cognitive and clinical phenomena. However, there is still no general agreement on the interpretation of microstate analysis. Various clustering algorithms have been used for microstate computation, and multiple studies suggest that the microstate time series may provide insight into the neural activity of the brain in the resting state. This study addresses two gaps in the literature. Firstly, by applying several state-of-the-art microstate algorithms to a large dataset of EEG recordings, we aim to characterise and describe various microstate algorithms. We demonstrate and discuss why the three “classically” used algorithms ((T)AAHC and modified K-Means) yield virtually the same results, while HMM algorithm generates the most dissimilar results. Secondly, we aim to test the hypothesis that dynamical microstate properties might be, to a large extent, determined by the linear characteristics of the underlying EEG signal, in particular, by the cross-covariance and autocorrelation structure of the EEG data. To this end, we generated a Fourier transform surrogate of the EEG signal to compare microstate properties. Here, we found that these are largely similar, thus hinting that microstate properties depend to a very high degree on the linear covariance and autocorrelation structure of the underlying EEG data. Finally, we treated the EEG data as a vector autoregression process, estimated its parameters, and generated surrogate stationary and linear data from fitted VAR. We observed that such a linear model generates microstates highly comparable to those estimated from real EEG data, supporting the conclusion that a linear EEG model can help with the methodological and clinical interpretation of both static and dynamic human brain microstate properties.

  • Název v anglickém jazyce

    Towards a dynamical understanding of microstate analysis of M/EEG data

  • Popis výsledku anglicky

    One of the interesting aspects of EEG data is the presence of temporally stable and spatially coherent patterns of activity, known as microstates, which have been linked to various cognitive and clinical phenomena. However, there is still no general agreement on the interpretation of microstate analysis. Various clustering algorithms have been used for microstate computation, and multiple studies suggest that the microstate time series may provide insight into the neural activity of the brain in the resting state. This study addresses two gaps in the literature. Firstly, by applying several state-of-the-art microstate algorithms to a large dataset of EEG recordings, we aim to characterise and describe various microstate algorithms. We demonstrate and discuss why the three “classically” used algorithms ((T)AAHC and modified K-Means) yield virtually the same results, while HMM algorithm generates the most dissimilar results. Secondly, we aim to test the hypothesis that dynamical microstate properties might be, to a large extent, determined by the linear characteristics of the underlying EEG signal, in particular, by the cross-covariance and autocorrelation structure of the EEG data. To this end, we generated a Fourier transform surrogate of the EEG signal to compare microstate properties. Here, we found that these are largely similar, thus hinting that microstate properties depend to a very high degree on the linear covariance and autocorrelation structure of the underlying EEG data. Finally, we treated the EEG data as a vector autoregression process, estimated its parameters, and generated surrogate stationary and linear data from fitted VAR. We observed that such a linear model generates microstates highly comparable to those estimated from real EEG data, supporting the conclusion that a linear EEG model can help with the methodological and clinical interpretation of both static and dynamic human brain microstate properties.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-32608S" target="_blank" >GA21-32608S: Charakterizace stavového repertoáru a dynamiky spontánní mozkové aktivity neurozobrazovacími metodami</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neuroimage

  • ISSN

    1053-8119

  • e-ISSN

    1095-9572

  • Svazek periodika

    281

  • Číslo periodika v rámci svazku

    November 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    120371

  • Kód UT WoS článku

    001083868400001

  • EID výsledku v databázi Scopus

    2-s2.0-85171802503