Towards a dynamical understanding of microstate analysis of M/EEG data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00576873" target="_blank" >RIV/67985807:_____/23:00576873 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00023752:_____/23:43921168
Výsledek na webu
<a href="https://dx.doi.org/10.1016/j.neuroimage.2023.120371" target="_blank" >https://dx.doi.org/10.1016/j.neuroimage.2023.120371</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neuroimage.2023.120371" target="_blank" >10.1016/j.neuroimage.2023.120371</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards a dynamical understanding of microstate analysis of M/EEG data
Popis výsledku v původním jazyce
One of the interesting aspects of EEG data is the presence of temporally stable and spatially coherent patterns of activity, known as microstates, which have been linked to various cognitive and clinical phenomena. However, there is still no general agreement on the interpretation of microstate analysis. Various clustering algorithms have been used for microstate computation, and multiple studies suggest that the microstate time series may provide insight into the neural activity of the brain in the resting state. This study addresses two gaps in the literature. Firstly, by applying several state-of-the-art microstate algorithms to a large dataset of EEG recordings, we aim to characterise and describe various microstate algorithms. We demonstrate and discuss why the three “classically” used algorithms ((T)AAHC and modified K-Means) yield virtually the same results, while HMM algorithm generates the most dissimilar results. Secondly, we aim to test the hypothesis that dynamical microstate properties might be, to a large extent, determined by the linear characteristics of the underlying EEG signal, in particular, by the cross-covariance and autocorrelation structure of the EEG data. To this end, we generated a Fourier transform surrogate of the EEG signal to compare microstate properties. Here, we found that these are largely similar, thus hinting that microstate properties depend to a very high degree on the linear covariance and autocorrelation structure of the underlying EEG data. Finally, we treated the EEG data as a vector autoregression process, estimated its parameters, and generated surrogate stationary and linear data from fitted VAR. We observed that such a linear model generates microstates highly comparable to those estimated from real EEG data, supporting the conclusion that a linear EEG model can help with the methodological and clinical interpretation of both static and dynamic human brain microstate properties.
Název v anglickém jazyce
Towards a dynamical understanding of microstate analysis of M/EEG data
Popis výsledku anglicky
One of the interesting aspects of EEG data is the presence of temporally stable and spatially coherent patterns of activity, known as microstates, which have been linked to various cognitive and clinical phenomena. However, there is still no general agreement on the interpretation of microstate analysis. Various clustering algorithms have been used for microstate computation, and multiple studies suggest that the microstate time series may provide insight into the neural activity of the brain in the resting state. This study addresses two gaps in the literature. Firstly, by applying several state-of-the-art microstate algorithms to a large dataset of EEG recordings, we aim to characterise and describe various microstate algorithms. We demonstrate and discuss why the three “classically” used algorithms ((T)AAHC and modified K-Means) yield virtually the same results, while HMM algorithm generates the most dissimilar results. Secondly, we aim to test the hypothesis that dynamical microstate properties might be, to a large extent, determined by the linear characteristics of the underlying EEG signal, in particular, by the cross-covariance and autocorrelation structure of the EEG data. To this end, we generated a Fourier transform surrogate of the EEG signal to compare microstate properties. Here, we found that these are largely similar, thus hinting that microstate properties depend to a very high degree on the linear covariance and autocorrelation structure of the underlying EEG data. Finally, we treated the EEG data as a vector autoregression process, estimated its parameters, and generated surrogate stationary and linear data from fitted VAR. We observed that such a linear model generates microstates highly comparable to those estimated from real EEG data, supporting the conclusion that a linear EEG model can help with the methodological and clinical interpretation of both static and dynamic human brain microstate properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-32608S" target="_blank" >GA21-32608S: Charakterizace stavového repertoáru a dynamiky spontánní mozkové aktivity neurozobrazovacími metodami</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neuroimage
ISSN
1053-8119
e-ISSN
1095-9572
Svazek periodika
281
Číslo periodika v rámci svazku
November 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
120371
Kód UT WoS článku
001083868400001
EID výsledku v databázi Scopus
2-s2.0-85171802503