Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

First-Order Relevant Reasoners in Classical Worlds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00572117" target="_blank" >RIV/67985807:_____/24:00572117 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1017/S1755020323000096" target="_blank" >https://doi.org/10.1017/S1755020323000096</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1755020323000096" target="_blank" >10.1017/S1755020323000096</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    First-Order Relevant Reasoners in Classical Worlds

  • Popis výsledku v původním jazyce

    Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail the relation between the demand that classical possible worlds have Tarskian truth conditions and incompleteness results in quantified relevant logics.

  • Název v anglickém jazyce

    First-Order Relevant Reasoners in Classical Worlds

  • Popis výsledku anglicky

    Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail the relation between the demand that classical possible worlds have Tarskian truth conditions and incompleteness results in quantified relevant logics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-01137S" target="_blank" >GA22-01137S: Metamatematika substrukturálních modálních logik</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Review of Symbolic Logic

  • ISSN

    1755-0203

  • e-ISSN

    1755-0211

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    26

  • Strana od-do

    793-818

  • Kód UT WoS článku

    000962462700001

  • EID výsledku v databázi Scopus

    2-s2.0-85151875840