Equational Anti-Unification over Absorption Theories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00584853" target="_blank" >RIV/67985807:_____/24:00584853 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-63501-4_17" target="_blank" >http://dx.doi.org/10.1007/978-3-031-63501-4_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63501-4_17" target="_blank" >10.1007/978-3-031-63501-4_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equational Anti-Unification over Absorption Theories
Popis výsledku v původním jazyce
Interest in anti-unification, the dual problem of unification, is on the rise due to applications within the field of software analysis and related areas. For example, anti-unification-based techniques have found uses within clone detection and automatic program repair methods. While syntactic forms of anti-unification are enough for many applications, some aspects of software analysis methods are more appropriately modeled by reasoning modulo an equational theory. Thus, extending existing anti-unification methods to deal with important equational theories is the natural step forward. This paper considers anti-unification modulo pure absorption theories, i.e., some operators are associated with a special constant satisfying the axiom f(x,εf)≈f(εf,x)≈εf. We provide a sound and complete rule-based algorithm for such theories. Furthermore, we show that anti-unification modulo absorption is infinitary. Despite this, our algorithm terminates and produces a finitary algorithmic representation of the minimal complete set of solutions. We also show that the linear variant is finitary.
Název v anglickém jazyce
Equational Anti-Unification over Absorption Theories
Popis výsledku anglicky
Interest in anti-unification, the dual problem of unification, is on the rise due to applications within the field of software analysis and related areas. For example, anti-unification-based techniques have found uses within clone detection and automatic program repair methods. While syntactic forms of anti-unification are enough for many applications, some aspects of software analysis methods are more appropriately modeled by reasoning modulo an equational theory. Thus, extending existing anti-unification methods to deal with important equational theories is the natural step forward. This paper considers anti-unification modulo pure absorption theories, i.e., some operators are associated with a special constant satisfying the axiom f(x,εf)≈f(εf,x)≈εf. We provide a sound and complete rule-based algorithm for such theories. Furthermore, we show that anti-unification modulo absorption is infinitary. Despite this, our algorithm terminates and produces a finitary algorithmic representation of the minimal complete set of solutions. We also show that the linear variant is finitary.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-06414L" target="_blank" >GF22-06414L: Analýza důkazů a automatická dedukce pro rekurzivní struktury</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Automated Reasoning. 12th International Joint Conference, IJCAR 2024. Proceedings Part II
ISBN
978-3-031-63501-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
21
Strana od-do
317-337
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Nancy
Datum konání akce
1. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001275062900017