Energy Complexity of Convolutional Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00584980" target="_blank" >RIV/67985807:_____/24:00584980 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/24:PU151895
Výsledek na webu
<a href="https://doi.org/10.1162/neco_a_01676" target="_blank" >https://doi.org/10.1162/neco_a_01676</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/neco_a_01676" target="_blank" >10.1162/neco_a_01676</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy Complexity of Convolutional Neural Networks
Popis výsledku v původním jazyce
The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a number of methods have been proposed for providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated energy consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this letter, we introduce a simplified theoretical energy complexity model for CNNs, based on only a two-level memory hierarchy that captures asymptotically all important sources of energy consumption for different CNN hardware implementations. In this model, we derive a simple energy lower bound and calculate the energy complexity of evaluating a CNN layer for two common data flows, providing corresponding upper bounds. According to statistical tests, the theoretical energy upper and lower bounds we present fit asymptotically very well with the real energy consumption of CNN implementations on the Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program, which validates the proposed energy complexity model for CNNs.
Název v anglickém jazyce
Energy Complexity of Convolutional Neural Networks
Popis výsledku anglicky
The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a number of methods have been proposed for providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated energy consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this letter, we introduce a simplified theoretical energy complexity model for CNNs, based on only a two-level memory hierarchy that captures asymptotically all important sources of energy consumption for different CNN hardware implementations. In this model, we derive a simple energy lower bound and calculate the energy complexity of evaluating a CNN layer for two common data flows, providing corresponding upper bounds. According to statistical tests, the theoretical energy upper and lower bounds we present fit asymptotically very well with the real energy consumption of CNN implementations on the Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program, which validates the proposed energy complexity model for CNNs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computation
ISSN
0899-7667
e-ISSN
1530-888X
Svazek periodika
36
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
1601-1625
Kód UT WoS článku
001272123000003
EID výsledku v databázi Scopus
2-s2.0-85195394955