On energy complexity of fully-connected layers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00586300" target="_blank" >RIV/67985807:_____/24:00586300 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.neunet.2024.106419" target="_blank" >https://doi.org/10.1016/j.neunet.2024.106419</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2024.106419" target="_blank" >10.1016/j.neunet.2024.106419</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On energy complexity of fully-connected layers
Popis výsledku v původním jazyce
The massive increase in the size of deep neural networks (DNNs) is accompanied by a significant increase in energy consumption of their hardware implementations which is critical for their widespread deployment in low-power mobile devices. In our previous work, an abstract hardware-independent model of energy complexity for convolutional neural networks (CNNs) has been proposed and experimentally validated. Based on this model, we provide a theoretical analysis of energy complexity related to the computation of a fully-connected layer when its inputs, outputs, and weights are transferred between two kinds of memories (DRAM and Buffer). First, we establish a general lower bound on this energy complexity. Then, we present two dataflows and calculate their energy costs to achieve the corresponding upper bounds. In the case of a partitioned Buffer, we prove by the weak duality theorem from linear programming that the lower and upper bounds coincide up to an additive constant, and therefore establish the optimal energy complexity. Finally, the asymptotically optimal quadratic energy complexity of fully-connected layers is experimentally validated by estimating their energy consumption on the Simba and Eyeriss hardware.
Název v anglickém jazyce
On energy complexity of fully-connected layers
Popis výsledku anglicky
The massive increase in the size of deep neural networks (DNNs) is accompanied by a significant increase in energy consumption of their hardware implementations which is critical for their widespread deployment in low-power mobile devices. In our previous work, an abstract hardware-independent model of energy complexity for convolutional neural networks (CNNs) has been proposed and experimentally validated. Based on this model, we provide a theoretical analysis of energy complexity related to the computation of a fully-connected layer when its inputs, outputs, and weights are transferred between two kinds of memories (DRAM and Buffer). First, we establish a general lower bound on this energy complexity. Then, we present two dataflows and calculate their energy costs to achieve the corresponding upper bounds. In the case of a partitioned Buffer, we prove by the weak duality theorem from linear programming that the lower and upper bounds coincide up to an additive constant, and therefore establish the optimal energy complexity. Finally, the asymptotically optimal quadratic energy complexity of fully-connected layers is experimentally validated by estimating their energy consumption on the Simba and Eyeriss hardware.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Networks
ISSN
0893-6080
e-ISSN
1879-2782
Svazek periodika
178
Číslo periodika v rámci svazku
October 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
106419
Kód UT WoS článku
001281632200001
EID výsledku v databázi Scopus
2-s2.0-85195428301