Constrained hitting set problem with intervals: Hardness, FPT and approximation algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00585147" target="_blank" >RIV/67985807:_____/24:00585147 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.tcs.2024.114402" target="_blank" >https://doi.org/10.1016/j.tcs.2024.114402</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2024.114402" target="_blank" >10.1016/j.tcs.2024.114402</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constrained hitting set problem with intervals: Hardness, FPT and approximation algorithms
Popis výsledku v původním jazyce
We study a constrained version of the Geometric Hitting Set problem where we are given a set of points, partitioned into pairwise disjoint subsets, and a set of intervals. The objective is to hit all the intervals with a minimum number of points such that if we select a point from a subset, we must select all the points from that subset. We consider two special cases of the problem where each subset can have at most 2 and 3 points. If each subset contains at most 2 points and the intervals are disjoint, we show that the problem admits a polynomial-time algorithm. On the contrary, if each subset contains at most t points, where t >= 2, and the intervals are overlapping, we show that the problem becomes NP-Hard. Further, when each subset contains at most t points where t >= 3, and the intervals are disjoint, we prove that the problem is NP-Hard, and we provide two constant factor approximation algorithms for this problem. We also study the problem from the parameterized complexity perspective. If the intervals are disjoint, then we prove that the problem is in FPT when parameterized by the size of the solution. We also complement this result by giving a lower bound in the size of the kernel for disjoint intervals, and we also provide a polynomial kernel when the size of all subsets is bounded by a constant.
Název v anglickém jazyce
Constrained hitting set problem with intervals: Hardness, FPT and approximation algorithms
Popis výsledku anglicky
We study a constrained version of the Geometric Hitting Set problem where we are given a set of points, partitioned into pairwise disjoint subsets, and a set of intervals. The objective is to hit all the intervals with a minimum number of points such that if we select a point from a subset, we must select all the points from that subset. We consider two special cases of the problem where each subset can have at most 2 and 3 points. If each subset contains at most 2 points and the intervals are disjoint, we show that the problem admits a polynomial-time algorithm. On the contrary, if each subset contains at most t points, where t >= 2, and the intervals are overlapping, we show that the problem becomes NP-Hard. Further, when each subset contains at most t points where t >= 3, and the intervals are disjoint, we prove that the problem is NP-Hard, and we provide two constant factor approximation algorithms for this problem. We also study the problem from the parameterized complexity perspective. If the intervals are disjoint, then we prove that the problem is in FPT when parameterized by the size of the solution. We also complement this result by giving a lower bound in the size of the kernel for disjoint intervals, and we also provide a polynomial kernel when the size of all subsets is bounded by a constant.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Strukturální vlastnosti viditelnosti terénů a Voroného diagramů nejvzdálenější barvy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Svazek periodika
990
Číslo periodika v rámci svazku
1 April 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
114402
Kód UT WoS článku
001174592700001
EID výsledku v databázi Scopus
2-s2.0-85183578352