Characterizing time-resolved stochasticity in non-stationary time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00586742" target="_blank" >RIV/67985807:_____/24:00586742 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.chaos.2024.115069" target="_blank" >https://doi.org/10.1016/j.chaos.2024.115069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2024.115069" target="_blank" >10.1016/j.chaos.2024.115069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterizing time-resolved stochasticity in non-stationary time series
Popis výsledku v původním jazyce
Time series often exhibit a combination of long-range drift and short-term stochastic fluctuations. Traditional methods for analyzing such series involve fitting regression models to capture the drift component and using the residuals to estimate the random component. We demonstrate, however, that estimating the drift in a real-time (time-resolved) manner poses significant challenges. We find, surprisingly, that contrary to conventional expectations, estimation of the drift is less accurate than evaluating short-term fluctuations in data with a given number of data points. Two factors contribute to this unexpected complexity: measurement noise, and the slower convergence rate of the drift estimation. As a result, real-time estimation of stochastic fluctuations can be more accurate. We introduce the term stochasticity, as the square of the estimated short-term fluctuations within a time window of length dt, which can be estimated in real-time (time-resolved) for given non-stationary time series and those exhibiting unique trajectories. To demonstrate the practical applications of the concept of real-time stochasticity, we calculate it for synthetic time series generated by both linear and nonlinear dynamical equations, which generate stationary and non-stationary trajectories for which we have access to the ground truth. We have also analyzed various real-world datasets: global temperature anomalies in 12 distinct geographical regions, keystroke time series from Parkinson’s disease patients, fluctuations in gold prices, atmospheric CO₂ concentration, wind velocity data, and earthquake occurrences. Our method exclusively provides the time dependency, rather than both state and time dependencies, of the stochasticity.
Název v anglickém jazyce
Characterizing time-resolved stochasticity in non-stationary time series
Popis výsledku anglicky
Time series often exhibit a combination of long-range drift and short-term stochastic fluctuations. Traditional methods for analyzing such series involve fitting regression models to capture the drift component and using the residuals to estimate the random component. We demonstrate, however, that estimating the drift in a real-time (time-resolved) manner poses significant challenges. We find, surprisingly, that contrary to conventional expectations, estimation of the drift is less accurate than evaluating short-term fluctuations in data with a given number of data points. Two factors contribute to this unexpected complexity: measurement noise, and the slower convergence rate of the drift estimation. As a result, real-time estimation of stochastic fluctuations can be more accurate. We introduce the term stochasticity, as the square of the estimated short-term fluctuations within a time window of length dt, which can be estimated in real-time (time-resolved) for given non-stationary time series and those exhibiting unique trajectories. To demonstrate the practical applications of the concept of real-time stochasticity, we calculate it for synthetic time series generated by both linear and nonlinear dynamical equations, which generate stationary and non-stationary trajectories for which we have access to the ground truth. We have also analyzed various real-world datasets: global temperature anomalies in 12 distinct geographical regions, keystroke time series from Parkinson’s disease patients, fluctuations in gold prices, atmospheric CO₂ concentration, wind velocity data, and earthquake occurrences. Our method exclusively provides the time dependency, rather than both state and time dependencies, of the stochasticity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos Solitons & Fractals
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
185
Číslo periodika v rámci svazku
August 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
115069
Kód UT WoS článku
001249175500002
EID výsledku v databázi Scopus
2-s2.0-85194906370