Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Characterizing time-resolved stochasticity in non-stationary time series

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00586742" target="_blank" >RIV/67985807:_____/24:00586742 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.chaos.2024.115069" target="_blank" >https://doi.org/10.1016/j.chaos.2024.115069</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2024.115069" target="_blank" >10.1016/j.chaos.2024.115069</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Characterizing time-resolved stochasticity in non-stationary time series

  • Popis výsledku v původním jazyce

    Time series often exhibit a combination of long-range drift and short-term stochastic fluctuations. Traditional methods for analyzing such series involve fitting regression models to capture the drift component and using the residuals to estimate the random component. We demonstrate, however, that estimating the drift in a real-time (time-resolved) manner poses significant challenges. We find, surprisingly, that contrary to conventional expectations, estimation of the drift is less accurate than evaluating short-term fluctuations in data with a given number of data points. Two factors contribute to this unexpected complexity: measurement noise, and the slower convergence rate of the drift estimation. As a result, real-time estimation of stochastic fluctuations can be more accurate. We introduce the term stochasticity, as the square of the estimated short-term fluctuations within a time window of length dt, which can be estimated in real-time (time-resolved) for given non-stationary time series and those exhibiting unique trajectories. To demonstrate the practical applications of the concept of real-time stochasticity, we calculate it for synthetic time series generated by both linear and nonlinear dynamical equations, which generate stationary and non-stationary trajectories for which we have access to the ground truth. We have also analyzed various real-world datasets: global temperature anomalies in 12 distinct geographical regions, keystroke time series from Parkinson’s disease patients, fluctuations in gold prices, atmospheric CO₂ concentration, wind velocity data, and earthquake occurrences. Our method exclusively provides the time dependency, rather than both state and time dependencies, of the stochasticity.

  • Název v anglickém jazyce

    Characterizing time-resolved stochasticity in non-stationary time series

  • Popis výsledku anglicky

    Time series often exhibit a combination of long-range drift and short-term stochastic fluctuations. Traditional methods for analyzing such series involve fitting regression models to capture the drift component and using the residuals to estimate the random component. We demonstrate, however, that estimating the drift in a real-time (time-resolved) manner poses significant challenges. We find, surprisingly, that contrary to conventional expectations, estimation of the drift is less accurate than evaluating short-term fluctuations in data with a given number of data points. Two factors contribute to this unexpected complexity: measurement noise, and the slower convergence rate of the drift estimation. As a result, real-time estimation of stochastic fluctuations can be more accurate. We introduce the term stochasticity, as the square of the estimated short-term fluctuations within a time window of length dt, which can be estimated in real-time (time-resolved) for given non-stationary time series and those exhibiting unique trajectories. To demonstrate the practical applications of the concept of real-time stochasticity, we calculate it for synthetic time series generated by both linear and nonlinear dynamical equations, which generate stationary and non-stationary trajectories for which we have access to the ground truth. We have also analyzed various real-world datasets: global temperature anomalies in 12 distinct geographical regions, keystroke time series from Parkinson’s disease patients, fluctuations in gold prices, atmospheric CO₂ concentration, wind velocity data, and earthquake occurrences. Our method exclusively provides the time dependency, rather than both state and time dependencies, of the stochasticity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos Solitons & Fractals

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Svazek periodika

    185

  • Číslo periodika v rámci svazku

    August 2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    115069

  • Kód UT WoS článku

    001249175500002

  • EID výsledku v databázi Scopus

    2-s2.0-85194906370