Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00600285" target="_blank" >RIV/67985807:_____/24:00600285 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/24:00377328

  • Výsledek na webu

    <a href="https://www.activeml.net/ial2024/pdf/paper6.pdf" target="_blank" >https://www.activeml.net/ial2024/pdf/paper6.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization

  • Popis výsledku v původním jazyce

    Active learning plays a crucial role in black-box optimization, especially for objective functions that are expensive to evaluate. Continuous black-box optimization has adopted an approach called surrogate modelling, where the original black-box objective is approximated with a regression model. An active learning task in this context is to decide which points should be evaluated using the original objective to update the surrogate model. Apart from low-order polynomials, the first surrogate models were artificial neural networks of the kinds multilayer perceptron and radial basis function network. In the late 2000s, neural networks have been superseded by other kinds of surrogate models, primarily Gaussian processes. However, over the last 15 years, neural networks have seen significant and successful development, suggesting that they once again have the potential to serve as promising surrogate models. This paper reviews possible research directions concerning that potential, and recalls initial results from investigations in some of these directions. Finally, it contributes to those results by investigating the state-of-the-art black-box optimizer CMA-ES surrogate-assisted by two variants of random-activation-function neural network ensembles.

  • Název v anglickém jazyce

    Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization

  • Popis výsledku anglicky

    Active learning plays a crucial role in black-box optimization, especially for objective functions that are expensive to evaluate. Continuous black-box optimization has adopted an approach called surrogate modelling, where the original black-box objective is approximated with a regression model. An active learning task in this context is to decide which points should be evaluated using the original objective to update the surrogate model. Apart from low-order polynomials, the first surrogate models were artificial neural networks of the kinds multilayer perceptron and radial basis function network. In the late 2000s, neural networks have been superseded by other kinds of surrogate models, primarily Gaussian processes. However, over the last 15 years, neural networks have seen significant and successful development, suggesting that they once again have the potential to serve as promising surrogate models. This paper reviews possible research directions concerning that potential, and recalls initial results from investigations in some of these directions. Finally, it contributes to those results by investigating the state-of-the-art black-box optimizer CMA-ES surrogate-assisted by two variants of random-activation-function neural network ensembles.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Interactive Adaptive Learning 2024: Proceedings of the Workshop on Interactive Adaptive Learning

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    21

  • Strana od-do

    47-67

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing

  • Místo vydání

    Aachen

  • Místo konání akce

    Vilnius

  • Datum konání akce

    9. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku