Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00600285" target="_blank" >RIV/67985807:_____/24:00600285 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/24:00377328
Výsledek na webu
<a href="https://www.activeml.net/ial2024/pdf/paper6.pdf" target="_blank" >https://www.activeml.net/ial2024/pdf/paper6.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization
Popis výsledku v původním jazyce
Active learning plays a crucial role in black-box optimization, especially for objective functions that are expensive to evaluate. Continuous black-box optimization has adopted an approach called surrogate modelling, where the original black-box objective is approximated with a regression model. An active learning task in this context is to decide which points should be evaluated using the original objective to update the surrogate model. Apart from low-order polynomials, the first surrogate models were artificial neural networks of the kinds multilayer perceptron and radial basis function network. In the late 2000s, neural networks have been superseded by other kinds of surrogate models, primarily Gaussian processes. However, over the last 15 years, neural networks have seen significant and successful development, suggesting that they once again have the potential to serve as promising surrogate models. This paper reviews possible research directions concerning that potential, and recalls initial results from investigations in some of these directions. Finally, it contributes to those results by investigating the state-of-the-art black-box optimizer CMA-ES surrogate-assisted by two variants of random-activation-function neural network ensembles.
Název v anglickém jazyce
Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization
Popis výsledku anglicky
Active learning plays a crucial role in black-box optimization, especially for objective functions that are expensive to evaluate. Continuous black-box optimization has adopted an approach called surrogate modelling, where the original black-box objective is approximated with a regression model. An active learning task in this context is to decide which points should be evaluated using the original objective to update the surrogate model. Apart from low-order polynomials, the first surrogate models were artificial neural networks of the kinds multilayer perceptron and radial basis function network. In the late 2000s, neural networks have been superseded by other kinds of surrogate models, primarily Gaussian processes. However, over the last 15 years, neural networks have seen significant and successful development, suggesting that they once again have the potential to serve as promising surrogate models. This paper reviews possible research directions concerning that potential, and recalls initial results from investigations in some of these directions. Finally, it contributes to those results by investigating the state-of-the-art black-box optimizer CMA-ES surrogate-assisted by two variants of random-activation-function neural network ensembles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Interactive Adaptive Learning 2024: Proceedings of the Workshop on Interactive Adaptive Learning
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
21
Strana od-do
47-67
Název nakladatele
Technical University & CreateSpace Independent Publishing
Místo vydání
Aachen
Místo konání akce
Vilnius
Datum konání akce
9. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—